CS-107 : Game engine elements

J. BERDAT, B. CHATELAIN, Q. JUPPET AND J. SAM VERSION 1.0.0

This English version of the tutorial was generated using a tool for automatic
translation. The reference document remains the French version. In case
something is unclear in the English version please refer to the French one or ask
questions

Table des matieres

1 Introduction

2 Overview of the toolkit’s architecture
3 Setting up mini-project 2

4 Tutorial I
4.1 Playable e
4.2 Simulation loop
4.3 Grid games
4.4 Play Areas : class Area
4.4.1 Transition from one area to another
4.4.2 Camera managemento
4.5 Games with areas : class AreaGame
4.6 Generic actors e
4.7 Exercise 1 : first “game with areas”o o0
4.7.1 First concrete actor Lo
4.7.2 First concrete play areas Lo
4.7.3 First game with concrete areas oL L
4.7.4 Main character
4.7.5 Controls e

5 Tutorial 11
5.1 Let’s talk a little about interfaces
52 Gridandcells
5.3 Actor for "wallpaper” L
5.3.1 Exercise 1 (continued : adding a wallpaper)
5.4 Exercise 2 : first grid game
5.4.1 Specific grids

© o I I

5.4.2 Specific play areas
5.4.3 Tuto2 . ..o
5.5 Grid game playerso
9.5.1 AreaEntityo
5.5.2 Interfaces Interactor and Interactable
5.5.3 The class MovableAreaEntity
5.6 The area and its grid dictate their conditions
5.6.1 Conditions dictated by cells and grid
5.7 Exercise 2 (continued : adding a character)
5.7.1 Specific actors
5.7.2 Character Placement L.
5.7.3 Validation of the coded solution

Tutorial III
6.1 A little "refactoring” using nested classes (optional)
6.2 Tutorial solution
6.3 Interactions between actors L.
6.3.1 The Interactors Lo
6.3.2 Set of Interactors
6.3.3 Handling interactions at the grid level
6.4 Generic interactions
6.5 Class AreaGraph e
6.6 Classes RPGSprite and Animation
6.7 Signals L

Appendices
7.1 Appendix 1 : "Positionable” objects, transformed objects and graphic objects
7.2 Appendix 3 : Graphic resources and level editor

31
31
31
31
32
33
33
34
37
38
39

41
41

1 Introduction

To implement the second mini-project, the course provides you with a simple toolkit. This
toolkit is a basic game engine for creating 2D games. In particular, grid-based games which
can be adapted to a wide range of variants, inspired by examples such as :

Pokémon Emerald Super Pacman

The time and knowledge required to implement an entire game of this type is indeed beyond
the scope of our course. Moreover, learning how to work with and exploit existing code is
an integral part of learning object-oriented programming.

The aim of this document is to help you understand the contents of the provided toolkit. It
will then serve as a basis for the implementation of your second mini-project.

2 Overview of the toolkit’s architecture

The architecture of the toolkit is outlined in the diagram in Figure 1.

A brief description of the supplied packages is given below. This tutorial, along with the
code and documentation, provides detailed information about the toolkit, giving you the
opportunity to use code from more experienced programmers without having to understand
the details of the implementation.

You are not required to consult this section now and can directly go to section 3. Return to
this section as you read the tutorial and code the mini-project. You’ll also find some useful
additional information in the appendices (see section 7.1).

« The io package contains a number of utilities for handling file-based 1/O (input/out-
put). Typically, the images that will be used to represent the entities populating our
games are stored in files, and these utilities will make it possible to read and exploit
them.

o The math package models mathematical concepts such as vectors, affine transfor-
mations and random variables. This package includes notions of plane (i.e. two-
dimensional) geometry. For example, the package models shapes, and more specifically
what a line, a circle and a polygon are. You can then use them in mathematical
calculations or when representing graphical elements. Points and sizes are always given
in floating values, to get as close as possible to the continuous geometric plane we're
trying to simulate. To maintain consistency with basic geometric notions, the vertical
axis oy will by definition be oriented upwards and the horizontal axis ox to the right.

https://infogalactic.com/info/Tile-based_video_game
https://www.pokepedia.fr/Pok%C3%A9mon_Version_%C3%89meraude
https://pacman.fandom.com/wiki/Super_Pac-Man

[

©io

play
|

© math

= signal

L@ signal

= window

= engine

- areagame

© Play

@) Filesystem (© vector (@) 1mage (D updatable (D) Interactable
7© pDefaultFilesystem 7© Transform —(I) sound ~® Playable 7@ Interactor
-(© Folderrilesystem (@ positionable © Button (@ came
*© RessourceFilesystem 7@ Attachable (1) keyboard
~© zipFilesystem 7© Node (@) Mouse ®actor @actor
. @ # areagame
7© XMLTexts —(A) shape (1) Audio
g = g
© circle @ canvas o o
(© polyline (@) window e & -
-(© Polygon < swing &
-(© piscretecoordinate @ trem
~(@© RrandomEvent -(© 1magertem
t(© Rregionofinterest -(© shapertem (@D 1nterface
7© SoundItem

—(© Textalign (® classe abstraite

t(© swingimage
(© classe concréte

7@ swingsound

Enumération
(@© swingwindow

L(© Textitem

Fi1c. 1 : Main project packages. This tutorial will essentially introduce you to the game,
areagame and signal packages.

» The window package provides abstractions such as Window, Canvas (drawing area),
Mouse, Keyboard etc. (modeling the basic elements of the graphical interface). The
SwingWindow class in the swing directory is a concrete implementation of the window
concept based on Java Swing components. Objects with access to the canvas can
request the drawing of an image, shape or text. A request adds a graphic item of the
corresponding type to a list which will be sorted and rendered/drawn the next time
the window is updated. The list is then emptied, waiting for new requests. Similarly,
objects with access to the audio context can request a sound to be played at the next
update. The window typically refreshes at high frequency, usually between 20 and 60
times per second for most games. Ideally, graphic objects must be redrawn before each
refresh cycle to maintain visual continuity. The visual output produced during each
update cycle is called a frame, resulting in a frame rate of 20 to 60 frames per second.

o The engine package contains fundamental abstract elements of the game engine
(mainly abstract "actor” models).

o The areagame package builds on the material of the package engine to model games
played on a grid. This will be the type of games that will keep you busy throughout
this tutorial. The work to be carried out in the mini-project consists of using the
contents of the areagame package and extending it.

o The signal package will be used to include signal-related components, mainly logic.

You can find the javadoc of the provided code here.

https://proginsc.epfl.ch/wwwhiver/mini-projet2/JavaDoc/index.html

This tutorial is structured in 3 parts, which should be read according to the schedule
suggested in the exercise statements :
o the first part describes the modeling of the notion of a game on a grid, which involves
defining what a game area is and its associated grid; it also describes the concept of
actor at an abstract level ;

» the second part explains how the concept of interface is used to model these elements at
a sufficiently abstract level to make them usable in different contexts ; it also describes
more precisely the notion of grid and the specificities of actors evolving on grids;

o the last part describes the schema used to implement interactions between actors;
again at a sufficiently abstract level ; it also illustrates how the notion of nested classes
is used for better encapsulation in certain parts of the code.

3 Setting up mini-project 2

To follow this tutorial, you need to install the code provided in an Intellij project.

For the tutorial and the project, and to avoid rendering problems, be sure
to set your IDE to UTF-8 (see "Setting character encoding” in the IntelliJ
configuration guide or the Eclipse configuration guide).

Ot

https://proginsc.epfl.ch/wwwhiver/series/serie02/ex1/task.html
https://proginsc.epfl.ch/wwwhiver/series/serie02/ex1/task.html
https://proginsc.epfl.ch/wwwhiver/series/serie02/ex5/task.html

The material provided can be found in the archive : tutoriel-2025.zip
To install the projector on IntelliJ :

1. unzip this archive in a directory of your choice;

2. in IntelliJ, open the directory TUT0-2025 ;

For Eclipse, once the archive has been unzipped, create the project using the "From existing sources "
option, specifying the host directory as the project root.

o The material provided consists of two folders : game-engine
which contains the toolkit, and tutos which is the folder where
you will do the exercises.

e The project cannot be started directly : the game to be
launched by then engine is initialized to null in the Play. java
file in the tutos folder. You will correct this issue as you progress
through the tutorial.

e Do not modify the content of the game-engine folder.

o Take advantage of the search functions in IntellilJ
(for example, right-click on an identifier and then
Go to > Declaration or usage can be very useful).

o Simple rules to remember :

— The toolkit content can be consulted in the packages of
ch.epfl.cs107.play of the game-engine folder.

— The provided graphic resources are in the folder
src/main/resources of the folder tutos.

— The exercises are to be done in subpackages of
ch.epfl.cs107.play of the tutos folder.

— Learn how to use your development tool.

The three tutorial parts that follow, along with the mini-project 2, will guide you on what
materials to consult and what tasks to complete.

https://proginsc.epfl.ch/wwwhiver/mini-projet2/tuto/tutoriel-2025.zip

4 Tutorial 1

The goal of this first tutorial is to get you started with the concepts provided by the toolkit.
It explains in broad terms what a "game” is and how it evolves over time in the simulation
loop of the provided main program, Play. It also explains how a play area is modeled,
and how some very rudimentary actors can take part in it. It is recommended to open the
relevant code, essentially in the engine and aregame packages, and examine it while reading
the given explanations. Once you are familiarized with the concepts, you will be asked to
code a basic "game” as an exercise.

4.1 Playable

The supplied toolkit (game-engine) uses the abstract concept of a "playable element”
(Playable of the sub-package engine). A Playable can be a complete game, an area within
the game, etc. This is a fairly high-level abstraction, meaning that for a program element
to be "playable”, it must be able to :
1. evolve over time (presence of a method :
void update(float time));

2. start properly ; that is to say, initialize properly. In particular by incorporating all the
entities that are likely to evolve there) ; this requires access to a graphical context/-
window and a file system to fetch resources, such as images for example (presence of
a method :
begin(Window window, FileSystem filesystem));

3. end cleanly ; that is to say, implement a certain number of actions which characterize
its end. This can be an end message appearing on the screen or any other relevant
action (presence of a method :
end()).

A “playable element” is also characterized by a name, a character string returned by a
getTitle () method.

The concept of Playable is coded using the notion of Java interface. We will come back to it
when this has been covered in class. For the moment, we are just interested in their existence,
and not how they are implemented or used in Java. Think of the Playable interface as an
abstract class incorporating the elements mentioned above.

Note that Game, which models the notion of a “game” is a Playable with the addition of a
refresh rate.

4.2 Simulation loop

Someone wishing to “launch” a “game” should proceed as in the main example program
provided in Play. java :
o Create a game instance (line 31 currently commented), a file system (line 28) and a
window/graphical context (line 34).

o Launch the game with begin by passing the file system as parameters to connect it to
the outside world and the window to give it access to a graphic (and audio) context.

«create»

BN S L]

AreaBehavior

1|areaBehavior
1
Area

*
areas

1

AreaGame

F1G. 2 : A AreaGame has-a set of Area. Each Area has-a grid (AreaBehavior). Each grid is
made up of cells (Cell) which it is responsible for creating.

e Once the game is launched, and depending on the requested refresh rate, the game and
the window will be updated one after the other (lines 66 to 71). Refreshing the window
consists of redrawing its content from a list of graphical items (automatically) emptied
after each iteration. It is the role of the game, in its draw method, to make drawing
requests (and sound) to fill this list. For the game, updates consist of refreshing all of
its components (for example, reposition them) based on the time since the last call.

At the end of the game, its end method must be invoked (line 74).

4.3 Grid games

The tools provided in the engine package allow you to implement games in which :

« an indeterminate number of actors can intervene (characters, characteristic objects,
etc.) ;

« the playing area of the game is not confined to the physical window alone;

o the actors can interact physically in a simple way (use of simple concepts to manage
physical collisions and characterize the areas of interaction between actors).

Games that take place on a grid offer the advantage of significantly simplifying the last point
(management of collisions and interactions) and it is on this basis that we will start with
the coding of this year’s mini-project!.

This tutorial will therefore essentially describe the classes made available in the engine to
model “grid games”.

To summarize :

e AreaGame : "grid game” concept.

Inote that this engine also allows the programming of “games” detached from the notion of a grid

o Area : area of an AreaGame. An AreaGame potentially contains several Area.

e AreaBehavior : grid associated with an Area (each area of the game has a characte-
ristic grid).

Concretely, as shown in the figure 2, the code of the toolkit makes it possible to model games
that take place on a grid (AreaGame), and that are composed of a set of zones called Area
(section 4.4). Fach Area corresponds to a two-dimensional grid composed of cells (Cell) in
which actors/components (Actor) evolve and interact.
With the aim of visually resembling Game Boy type games, and as said above, this grid
is introduced in particular to simplify the management of interactions between actors as
well as their movements. Actor interactions and movements happen at the cell level. This
approach contrasts with continuous collision detection systems that manage interactions by
detecting physical collisions between actors in a fully continuous world model.
An Area is therefore, in a way, an independent game, a “playable element” too with a set
of actors. To avoid overloading this class, it does not have direct knowledge of the grid that
defines it. It delegates this knowledge as well as all its functionalities to a class AreaBehavior
(section 5.2). Therefore, each Area has an AreaBehavior which manages the behavior and
mechanics of the area with its grid, its cells and their content.
In the following subsection, you will find some explanations concerning the Area classes and
AreaGame. The explanations on AreaBehavior will be given to you in tutorial II (section 5).

4.4 Play Areas : class Area

The abstract class Area provided in the areagame.area package models a (playable) area
in a grid game. Open Javadoc and search for this class (small search window at the top
right)? to examine it in details. You may also read the implementation in the provided code
to get a precise understanding of the behavior of some functions.

An Area, is a “playable” element, and will therefore naturally have the methods begin, end
and update mentioned above.

An area has a list of actors (those who operate there, Actor). It has an associated grid
(AreaBehavior) which crisscrosses the playing area and on which the actors will move.

Among the fundamental methods to remember :

e begin which carries out all the initializations necessary for starting a playable area ;
« update which makes the actors evolve (by invoking their own update method);

o draw which renders the actors by drawing them and playing their possible sound effects
(actors’ beep and draw method) ;

e registerActor and unregisterActor which allow you to add/remove an actor from
the list;

« end which carries out all the actions to be carried out when the game on the current
area ends.

2do not hesitate to use the Javadoc for the rest of mini-project 2

https://proginsc.epfl.ch/wwwhiver/mini-projet2/JavaDoc/index.html

4.4.1 Transition from one area to another

The games that interest us are supposed to be composed of several areas of which only
one (the current area) will be played at a time. When moving from one area to another,
several strategies can be considered : if we return to an area already played before, we can
for example either restart the game on this area from the beginning or in the state in which
it had been left. To do this, the Area offers the following methods :

e void suspend() which by default does nothing but which, once redefined, can im-
plement any specific strategy to be applied when leaving one play area to move to
another (such as possibly saving information on the state of the game and the area) ;

e boolean resume(Window window, FileSystem fileSystem) which returns true by
default but which, once redefined, can allow the game to be resumed on an area from a
possible intermediate state where it would have been left. The return boolean indicates
whether resuming play on the area was possible or not.

4.4.2 Camera management

A play area can be larger than what is visible in the window. It is therefore necessary to
allow the view to be placed at a precise location in a given area and according to a given
scale factor. Among the important methods :

o getCameraScaleFactor() an abstract method which can be redefined in subclasses
to return the desired scale factor (depending on its value the view is more or less
"zoomed”) ;

o setViewCandidate which allows you to center the view on an actor. This is what will
allow the camera to follow a character in an area.

4.5 Games with areas : class AreaGame

The abstract class AreaGame from the package areagame simply models the concept of
“game with multiple areas”. A game with several areas is also above all a “playable” element
and will have the attributes and methods specific to this concept (attributes of type Window
and FileSystem, and the methods update, begin and end).

You will also find an attribute allowing you to represent the set of areas which constitutes
the game and an attribute representing the current playing area (which will be the only one
simulated) :

/// A map containing all the Area of the Game
private Map<String, Area> areas;

/// The current area the game is in

private Area currentArea;

As for the data structure to store all the areas, the Map type was chosen (associative key—value
table). This type allow you to find a play area based on its name (getTitle) (see appendix
7.1).

The getTitle method is crucial because the area’s title serves two purposes : it uniquely
identifies the area and establishes the link between the area and its associated resources.

The method update just updates the current area.
Among the important methods :
o addArea() which allows the dynamic addition of areas to the game;

« setCurrentArea which allows you to choose the current (simulated) area among all
the areas; its second parameter allows you to indicate whether when you move to this
area you want to restart it (parameter forceBegin to true) or continue it where you
left it during a possible previous passage).

4.6 Generic actors

The proposed toolkit makes it possible to program games featuring actors acting in various
ways. These can have all kinds of variations, ranging from a simple geometric piece (like in
Tetris®) to a complex “RPG” character.

You will find in the packages engine.actor and areagame.actor a certain number of classes
(and interfaces) allowing the notion of actors to be modeled in a generic way (see this class
schemal[Link]). The concept of “actor” is modeled by the entity engine.actor.Actor (this
is an interface, but think of it as an abstract class for now). For this very abstract model, an
actor is simply an entity that evolves over time (update method) and that can emit sounds.
The Entity class is a particular and basic implementation of an Actor : it represents
an entity with a position, a speed and a reference frame of its own (accessible using
getTransform). A little additional explanation on the notion of transform and frame of
reference is given in the appendix 7.1. In principle, there is no need to understand this
concept in depth to start the project.

The first actor you will use is very rudimentary. It will be coded as a subclass of Entity.

4.7 Exercise 1 : first “game with areas”

Now, it is the time to start trying to use the few elements of the engin presented so far. You
will code a draft game with areas.

IDEs like Eclipse or IntelliJ are very practical to automatically add missing import
directives in a class. This usage is recommended, but be careful, when there are several
choices, to include the option that corresponds to your needs and not to include
non-standard elements (you should only keep imports starting with java. or javax.).
The toolkit provided uses the Color class in particular. The java.awt.Color version
should be used and not other implementations from various alternative packages.

4.7.1 First concrete actor

Create a subpackage actor in the provided package ch.epfl.cs107.play.tutol. In this
package, you will code a new actor class called SimpleGhost. It derives from the class

11

https://proginsc.epfl.ch/wwwhiver/mini-projet2/actor-game.html
https://proginsc.epfl.ch/wwwhiver/mini-projet2/actor-game.html

Entity®. This will be an actor with a graphical representation, thus, it will have an attribute
of type Sprite (type provided in the engine.actor package).

Game Boy type games often simulate an aerial view known as a top view. To respect the
desired effect which dictates that being below implies being in front, the images must
be drawn from top to bottom so as not to create contradiction. The Sprite are simple
graphic images whose depth depends on the y coordinate of the entity to which they
relate. The Sprite objects also allow you to specify in their constructor which objects
they attach to (see the code for this class if necessary).

A SimpleGhost is also characterized by an energy level (encoded as a float). You will add
the following methods :

e boolean isWeak() returning the boolean true if the ghost’s energy level is less than
or equal to zero;

e void strengthen() returning the energy level to a given positive value (always the
same (choose 10 for example) ;
Its constructor will have the following signature :

public SimpleGhost(Vector position, String spriteName)

spriteName is the name of the image associated with the ghost during its construction
(this image will be searched in the folder src/main/resources by the code of Sprite). The
Sprite associated with SimpleGhost can be created using the following code :

new Sprite(spriteName, 1f, 1f, this);

The parameter this allows the constructor of the Sprite to attach it to the current object.

The constructor for SimpleGhost will initialize the energy level with a default value (choose
a value not too high like 10 ... you will see why a little later).

We also want to display the energy level next to the ghost. To do this you will need to
declare an attribute :

private TextGraphics hpText;

which will be initialized in the constructor using the following code :

new TextGraphics(Integer.toString((int)hp), 0.4f,
Color .BLUE) ;

where hp represents the “energy level” attribute.

To ensure that this text is linked to the ghost, and therefore moves with it, it must be
attached to it :

hpText.setParent (this) ;
The anchor point of the text can be shifted with this kind of code :
this.hpText.setAnchor (new Vector(-0.3f, 0.1£f));

3we name it SimpleGhost because it is derived from Entity which is a very low-level class of “actors”,

it is in fact simply an object that can be positioned in space

12

These two instructions must be placed in the constructor.

Our actor SimpleGhost inherits from a method void draw(Canvas canvas) inherited from
Entity. The latter allows us to display on a support such as Canvas®, the image associated
with our object. Note that Sprite and TextGraphics have void draw(Canvas canvas)
methods.

Redefine the draw inherited from Entity so that the energy level text is also displayed.
Then, redefine the void update(float deltaTime) method. Its role is to decrement by
deltaTime the ghost’s energy level; the ghost cannot, however, have an energy level lower
than zero. Remember to update the hpText text accordingly.

4.7.2 First concrete play areas

In the ch.epfl.cs107.tutol.area package, there is a subclass of Area called SimpleArea.
This class imposes on its concrete subclasses the definition of a method createArea allowing
you to create the content of a specific play area. The getWidth and getHeight will be
explained to you in the following tutorial and can be ignored for now. You can redefine
getCameraScaleFactor in class SimpleArea. For example, make it return the value 10.f.
This allows you to define a default scale factor to use for all areas of type SimpleArea.
Create a subpackage ch.epfl.cs107.tutol.area.maps and create the specific areas Village
and Ferme inheriting from SimpleArea.

Give concrete definitions to the createArea method in each of these classes. This method

should :
e In Ferme, do nothing;

« InVillage, create actor SimpleGhost and register it there (remember the registerActor
method, do you have any idea why we do not use addActor here 7) Use a Vector (20,10)
as position and the image named "ghost.2" for the sprite.

Any specific “game” must specify the name that characterizes it. To do this, you add to the
class Village, the redefinition :

@0verride
public String getTitle() {
return "zelda/Village";

}

Similarly, add the following in Ferme :

@0verride
public String getTitle() {
return "zelda/Ferme',;

}

Finally, note that the "default” constructors are sufficient for these two classes.

4.7.3 First game with concrete areas

At this stage we have two areas, one of which containing a concrete actor. We now have to
define a game made up of these two areas. Recall that AreaGame allows you to model a game

4Window derived from Canvas

with several areas. So, define in the ch.epfl.cs107.play.tutol package the class Tutol
inheriting from AreaGame. Provide it with a private method createAreas() that adds the
desired areas to the game. This method simply calls the addArea method from AreaGame.
For example, the following line would add the area Ferme :

addArea(new Ferme());

Like any playable element, Tutol must define the methods begin, end, update and getTitle.
Program them as follows :

o end does nothing in particular;
» update just invokes that of the super-class;
o getTitle returns a title associated with the game, like "Tuto1";
e begin should be coded according to the following model :
if (super.begin(window, fileSystem)) {

// treatment specific to Tutol
return true;

¥

else return false;

Specifically for Tutol, adapt the method to do the following :

— create areas (using createAreas);

— indicate that the current area is the area titled "zelda/Ferme" (we want to
always restart this area when selected ; the parameter forceBegin will therefore
be true)

Question 1

What happens if we forget to invoke the update of the superclass in the update by
Tutol?

All that remains is to indicate in the main program Play, that you wish to launch the
playable element Tutol.

To do this, simply comment the line :

// final Game game = null;

and add the following line after it :

final AreaGame game = new Tutol();

Remember that the main program calls the update method in a loop of the
simulated game (here Tutol), which calls the update of its current area, which in
turn calls the update of each of its actors. This is how the simulation can evolve
over time.

Ready for the big leap 7 Run your Play program.
If everything goes well ... a completely empty window is displayed. But where is our ghost ?

14

Answer : it is in the area that is not displayed. Indeed, we indicated that our current
area (the only one simulated) was "zelda/Ferme” and our ghost is in the area named
"zelda/Village". You can check this by changing the current area in Tutol. You should
then see the ghost’s energy level decreasing over time and stabilizing at zero.

4.7.4 Main character

Our aim is to code games in which a main character can be controlled via the keyboard so
that he can walk around different areas.

This actor will have a particular status and we will consider that he is one of the characteristic
elements of the game. Therefore, add to your game Tutol, an attribute :

private SimpleGhost player;

In the method begin of Tutol, start by giving a value to the main character by creating
a SimpleGhost positioned in (18, 7) and with the image name "ghost.1". Then, register
the main character in the current area (once it has been designated) and indicate that the
camera should now follow him (remember that setCurrentArea returns the current area
and that the setViewCandidate allows you to focus the camera on a particular actor). If
"zelda/Ferme" is the game’s starting area (the one chosen in begin), you should get this
when launching the game :

L

Note : The wallpaper color can be changed in the file SwingWindow in the window.swing
package, line 182.

4.7.5 Controls

At the moment we cannot do much with the main character. It is time to change that!
To do this, program in your class SimpleGhost the methods moveUp, moveDown, moveLeft
and moveRight allowing it to move a small fixed distance (for example 0.05), in a given
direction. For example, this is how moveUp can be encoded :

setCurrentPosition(getPosition () .add (0f, delta));

We use the methods setCurrentPosition and getPosition specific to Entity and which
inherits SimpleGhost as well as the add specific to the provided utility class, Vector. You
will proceed in the same way for the other methods.

Then modify the update of your game Tutol, so that it is receptive to keyboard events. If
the user presses “up-arrow” on the keyboard, the moveUp method of the main charactermust
be called. If he presses “down arrow” it is moveDown, if he presses “left arrow” it is moveLeft
and on “right-arrow” it is moveRight.

Here is how the provided API allows you to test that the up-arrow has been pressed :
Keyboard keyboard = getWindow().getKeyboard();

// You can also used Keyboard.DOWN, Keyboard.LEFT, and
Keyboard.RIGHT

Button key = keyboard.get(Keyboard.UP);

if (key.isDown ()) {
/] ...

}

Unfortunately, if you try to launch the game, you will have the impression that these keys
have no effect. Because the camera is centered on the main character and the background
is a solid color, you don’t have the impression of seeing him move.

To make the movement perceptible, we would need, for example, a background with fixed
objects. Another way to do it is to place it in an area where there is an element (actor) that
does not move. This is the case for our "zelda/Village"area where the second ghost is
not controllable via the keyboard and does not move.

To finalize the exercise, program in Tutol, a method void switchArea() which allows the
main character to move from one area to another. If he is in the area "zelda/Ferme",
he should move on to the one titled "zelda/Village"” and vice versa. Each time he
leaves an area he must be deregistered there. When he enters an area, the latter must
become the current area, the character must be recorded there and the camera centered
on him. When passing through another area, the main character will see his energy level
increased (strengthen() method). The transition from one area to another must be done
automatically as soon as the ghost becomes weak (isWeak method).

If you did things correctly, you should see the main character (orange ghost) appear by
himself when you launch the game, then his energy level gradually decreases until it reaches
zero. At this time, he transits towards the area where there is the blue ghost. In this area,
the arrows can make it move visibly (you will have the impression that it is the blue ghost
that is moving because the frame of reference is always centered on the orange ghost).

Note :in your coding of the switchArea method, you probably called setCurrentArea.
Experiment with calling it with false or true as a second argument (you should see an
impact on the blue ghost’s energy level). With false we find the area in the state where we
left it and, in the second, we recreate it from scratch. Finally, you can play with the scale
factor to see how it affects the game’s display.

This little exercise ends this first tutorial. It showed you how to use the engine for modeling
a game made up of several areas as well as for modeling simple actors. The objective of the

16

second tutorial is to start using the grids associated with areas.

17

5 Tutorial 11

This second tutorial explores the use of interfaces in the provided toolkit. It also presents
in more detail the notion of a grid associated with a playing area and the specific actors
who can take place there. As with the first tutorial, small exercises will allow you to use the
presented concepts.

5.1 Let’s talk a little about interfaces

Now that the notion of interface has been introduced in class, we can take a closer look at
their use in the toolkit. The Game class (in the package engine) models the abstract notion
of “game”. It is implemented using the Playable, Updatable and Drawable interfaces which
we invite you to examine (they are in the engine package).

Question 2

Why do you think it is better to declare the variable game of the Play program, as a
Game rather than as a AreaGame ?

Response element : Game represents the concept of “game” from the functional and
abstract point of view. AreaGame is just one possible implementation of this concept. If
we declare game like a AreaGame (grid game), the main program, Play, sees much more
of this object than its abstract functional representation as a “game”. It has access to all
its implementation details as a grid game. This program can then use these details at will
(and misuse) in its own implementation. This potentially induces unfortunate encapsulation
flaws. For example, what if Play decides to run a game that is not an area game and used
AreaGame specific methods in its main?

You will therefore note that interfaces are a powerful encapsulation tool : the area, the
grid and the actors need to know each other, which implies on their part to open access to
certain information. Typically, a play area must have access to the actors and the actors
must know in which game they are playing (potential encapsulation flaws). However, if,
as a user, we adhere to the discipline of viewing the game as the abstraction dictated by
Game, then the sensitive accesses are no longer exposed.

In the same spirit, the Actor allows you to model in a minimalist and abstract way the
functional aspects of an actor in a game, without having to expose the API of its possible
implementations. To do this, examine the contents of Actor in engine.actor. Actor models
a very simple abstract actor. The Entity class of the same package is a possible imple-
mentation from which all kinds of other specific implementations will derive. To protect
the codes from possible modifications in specific implementations, it is necessary to avoid
exposing the latter. Manipulating any actor under the label of Actor rather than as a specific
implementation allows us to achieve this goal.

To complete your knowledge of the toolkit, you can now take a closer look at the implements
links of the classes already presented, such as Area or AreaGame for example.

Let’s now continue our exploration of the provided abstractions. The areas in our first game
are a little dark. To remedy this, we're going to unveil the notion of grid attached to an

18

Bordure

Sol normal
Hautes herbes
Eau

Batiment
Sortie

Pancarte, Affiche

Fi1G. 3 : Example of a behavioral image with color-type correspondence

area (AreaBehavior), as well as the Background class. The latter will attach to the grids in
question a slightly less sidereal look.

5.2 Grid and cells

We saw in the previous tutorial that the Area class has an attribute of type AreaBehavior
This attribute models a grid that will condition the behavior of everything that takes its
place. Open the code for the AreaBehavior class. You’'ll see that its attributes are an
array of cells (Cell), as well as an image (the behaviorMap attribute). The constructor of
AreaBehavior (and its concrete sub-classes) initializes the array of cells from a color image
like the one shown in figure Figure 3, where each pixel represents a cell and each color a
different cell type. We will explain a little later how this correspondence is set up and how
it should be used.

The Cell class represents a generic cell and each extension of AreaBehavior that will be
specific to a given game will have to redefine specific extensions of the Cell class.

Note : For the moment, the grid and the cells are two autonomous entities. This is not
the best possible design, and we’ll come back to it in the final part of this tutorial.

A Cell has a content (the set of game entities occupying the cell), but for the moment
we're not interested in it. A Cell is characterized by its coordinates on the grid (of type
DiscreteCoordinates).

19

background image corresponding "behavior”

In the AreaBehavior constructor, the line :

window.getImage (ResourcePath.getBehaviors(fileName), null,
false);

simply allows you to read an image from a given file name.

Each concrete play area is, of course, attached to a concrete subclass of AreaBehavior.
This association will not necessarily be unique since it is conceivable that an area can
change its associated grid as it evolves over time. The engine therefore allows the mo-
dification of the AreaBehavior atached to an Area. This explains the presence of the
setBehavior (AreaBehavior ab) method in the Area class.

5.3 Actor for "wallpaper”

Each play area is assigned a "background” that defines its visual appearance. It’s conceivable

that such a visual may change over time (for example, different visuals for a night /day cycle).

Instead of coding the background of an area as a fixed attribute of the Area class, you will

have to code it as ... an actor. This actor is similar in spirit to the one you coded in

Tutol : it’s simply a subclass of Entity just like SimpleGhost. The code is provided in the

Background class of the engine.actor package. Start by taking a look at it. You will notice

that, by default, the image that characterizes this graphic actor is the one whose file name

corresponds to the name of its area as returned by the getTitle () method. For example, this

would be Village.png from the folder resources/images/background/zelda if getTitle ()
returns "zelda/Village".

To be able to adjust its size to that of the area on which it is applied as a background,
the actor Background needs to know the dimensions of this area. This is the purpose of the
getWidth() and getHeight () methods of the Area class. The width of the area is that of its
associated grid (AreaBehavior), i.e. the number of rows in the associated cell array. Similar
reasoning applies to the height. As you’d expect, there’s a link between the appearance of
the background and the image that describes the behavior of the grid, as shown in figure
5.3.

The resources directory provides some backgrounds in the src/main/resources/images/background
directories and associated "behavior” images in src/main/resources/images/behavior
(the correspondence is established through the name). Appendix 7.2 also provides a tool

20

for creating associated images background and behavior °.

5.3.1 Exercise 1 (continued : adding a wallpaper)

SimpleArea is a kind of playground that doesn’t really exploit the associated grid, but
only allows you to take its size into account. This will enable you to introduce your first
"background” actors.

Complete the specific areas Village and Ferme of the tutos.area.tutol package to ensure
that their createArea method adds the associated "wallpaper” actor. This is typically done
using the instruction :

registerActor (new Background(this))

If you launch the game Tutol again using Play, you should see the following wallpapers
displayed (only partially, due to the scale factor) (see figure 4).

"village” wallpaper “farm” wallpaper

The use of arrows now gives the impression of seeing our red ghost move (as the view focuses
on him, the background is not always displayed in the same place). Note that you can also
register an actor Foreground on the same principle (test the effect of such an addition to
understand what might motivate it).

It is a good start, but there’s still work to be done! Now, we should implement logic to
prevent the ghost from leaving the boundaries of the area. We would also like the area’s
graphic visual to have an impact : for example, for the area to change when the ghost transits
a region whose visual is that of a door/passageway, or for preventing the ghost from walking
on walls or on water bodies. You will now learn how to do this in a new exercise.

5.4 Exercise 2 : first grid game

The aim of this exercise is to create a variant Tuto2 of Tutol where concrete grids are atta-
ched to the areas. This constitues a basic RPG where our ghost moves around on a grid that
dictates where he can and cannot go. You will be working in the ch.epfl.cs107.play.tuto2
package.

As a warm-up, create the game Tuto2 whose content will for the moment be identical to that
of Tutol (but don’t forget to adapt the getTitle method, which should return "Tuto2").

Sbut you are not required to use it

21

5.4.1 Specific grids

The AreaBehavior class is a very general and abstract way of modeling the grid attached to
a play area. Now, we need to code a specialized version, allowing specific cell management.
To do this, you should code a subclass in the ch.epfl.cs107.play.tuto2.area package,
Tuto2Behavior inheriting from AreaBehavior

This subclass will give a particular interpretation to grid cells according to the color asso-
ciated with them in the corresponding behaviorMap.

To do this, define the following enumerated type in Tuto2Behavior :

public enum Tuto2CellType {
NULL (O, false),

WALL(-16777216, false), // #000000 RGB code of black
IMPASSABLE (-8750470, false), // #7A7TA7A, RGB color of gray
INTERACT (-256, true), // #FFFF00, RGB color of yellow
DOOR (-195580, true), // #FD0404, RGB color of red
WALKABLE (-1, true),; // #FFFFFF, RGB color of white

final int type;
final boolean isWalkable;

Tuto2CellType (int type, boolean isWalkable){
this.type = type;
this.isWalkable = isWalkable;

}

Add to this enumerated type the method static Tuto2CellType toType(int type) re-
turning the value of the enumerated type corresponding to the integer type. For example,
toType (-195580) will return the value DOOR. The value NULL will be returned if type doesn’t
match any expected value for the enumerated type.

The type Tuto2CellType will allow us to interpret the color red ¢ as a door, black as
a wall, gray as an impassable zone (like water, for example) and so on. If you open the
src/main/resources/behavior/zelda/Village.png file, the "behavior” image associated
with the "zelda/Village" area, you will see how this enumerated type can be used to
codify the role of each grid cell :

When a Tuto2Behavior is associated with an imageBehavior (as shown in Figure 4), the
image pixels map directly to a cell logic : black pixels become impassable cells, red pixels
serve as area transitions, and other colors define additional behaviors.

It is therefore necessary to define the cells of Tuto2behavior to dictate specific constraints
(depending on their nature). To do this, at the same level as Tuto2Behavior define the
subclass Tuto2Cell inheriting from Cell. A Tuto2Cell will be characterized by its cell
type (of type Tuto2CellType).

You will add the following constructor to Tuto2Cell :

Tuto2Cell (int x, int y, Tuto2CellType type)

Shttps ://stackoverflow.com/questions/25761438 /understanding-bufferedimage-getrgb-output-values

22

background image corresponding "behavior”

Fic. 4 : "Village” area and corresponding "behavior”

(Note : this constructor can be made private when using nested classes).

You will also equip Tuto2Behavior with a constructor that allows you to initialize the grid
by filling it with Tuto2Cell objects. To find the type to associate with the Tuto2Cell at
coordinates [x] [y] during its construction, you can use the following code :

Tuto2CellType cellType =
Tuto2CellType.toType (getRGB (height-1-y, x));

Indication : The values of an enumerated type are returned by the method values()
(here Tuto2CellType.values()) and it is of course possible to iterate on them with an
iteration (for (Type val : setOfType)).

Tuto2Cell inherits from Cell but must be concretely instantiable. You can consider that
it is always possible to leave a Tuto2Cell. For now, code the fact that it’s always possible
to enter a Tuto2Cell (we’ll come back to this later, so that the conditions depend on the
nature of the cell).

As Cell implements the Interactable interface, the compiler will require you to define the
methods isCellInteractable() and isViewInteractable() you can make them return
true and false respectively (but this isn’t really important at this stage and we will come
back to it later). For the void acceptInteraction(ArealnteractionVisitor v, bool
isCellInteraction) method, also required by the Interactable interface, simply leave
an empty body for now.

5.4.2 Specific play areas

In the ch.epfl.cs107.play.tuto2.area package, create a Tuto2Area class representing
our first play areas associated with specific grids. This class will be similar to the supplied
SimpleArea with the following differences :

o it does not need to redefine the getWidth and getHeight methods, as those inherited
from Area suit it well (its width and height are those of the associated grid) ;

 its begin method must associate it with a Tuto2Behavior type grid :

setBehavior (new Tuto2Behavior (window, getTitle()));

Finally, create the specific areas Village and Ferme in a ch.epfl.cs107.play.tuto2.area.maps
package. They are almost identical to their versions in ch.epfl.cs107.play.tutol.area.maps

23

but this time inheriting from Tuto2Area. These are two specific areas to which we can
associate a specific grid of type Tuto2Behavior.

5.4.3 Tuto2

Complete your Tuto2 game so that its areas will be Village and Ferme, as defined in
ch.epfl.cs107.play.tuto2.area.maps (not ch.epfl.cs107.play.tutol.area.maps!).
By default, the current area is Ferme from ch.epfl.cs107.play.tuto2.area.maps. Start
the game Tuto2. If all goes well, you should see the Ferme area (partially) displayed :

[

Comment out the creation and registration of the actor in the begin method, and make sure
that the update method contains only the call to the update method of the superclass (we
will have to change the type of actor and the way it evolves in the rest of this exercise). The
little ghost we used as an actor in Tutol game is actually just an image with a position. To
use the grid in order to move correctly, we need to make it a little more sophisticated. To
do this, we need to make use of more advanced types of actors offered by the toolkit, which
are presented here.

5.5 Grid game players

We already have a very generic way of modeling actors in a game, using the Actor interface
and the abstract Entity class. We will now see how this modeling is extended in the toolkit to
incorporate actors evolving on a grid. The classes described below are in the areagame . actor
package.

5.5.1 AreaEntity

The abstract class AreaEntity is used to model players belonging to a gridded play area.
Their main specificity is that they occupy cells of this grid. In general, they can occupy
several cells, but only one will be used to locate them, which we will call the main cell.
Actors in a gridded play area also have an orientation, which will allow them to be drawn
differently depending on where they’re moving towards. Finally, we start from the fairly
natural design assumption that such an actor can ”see” his neighborhood and therefore has
knowledge of the area to which he belongs.

24

Interactable

isViewlnteractable() boolean
getCurrentCells() List<DiscreteCoordinates> Entity

acceptinteraction(ArealnteractionVisitor, boolean) void getPosition() Vector
takeCellSpace() boolean getTransform() Transform
isCelllnteractable() boolean getVelocity() Vector
onLeaving(List<DiscreteCoordinates>) void a

onEntering(List<DiscreteCoordinates>) void

AreaEntity
getOrientation() Orientation
onEntering(List<DiscreteCoordinates>) void
onLeaving(List<DiscreteCoordinates>) void

MovableAreaEntity
changePosition(DiscreteCoordinates) boolean
getLeftCells() List<DiscreteCoordinates>
getEnteredCells() List<DiscreteCoordinates>
update(float) void
getVelocity() Vector

FiG. 5 : Hierarchy of grid-based game players

The Orientation type is provided in the math package.

You will note that the void setCurrentPosition(Vector v) method inherited from Entity
has been redefined to work on a grid (so that we can also update our main cell). We have not

coded the actor Background as an AreaEntity because it is an actor that is not supposed to

“inhabit” grid cells. This shows that a grid game can perfectly include other types of actor

than those specifically dedicated to occupying cells.

Finally, some useful ” getters-setters ” are also provided. Protected accesses have been chosen

for some sensitive methods to mitigate potential encapsulation leaks.

An important method of AreaEntity is setOwnerArea which lets you tell an actor what
area it belongs to.

5.5.2 Interfaces Interactor and Interactable

The purpose of the grid is to manage the content of its cells and what happens within them,
such as authorizing or prohibiting the passage of an actor from one cell to another, and
managing interactions between actors occupying identical or neighboring cells. This is the
role of the entities attribute of the Cell class (coded using the predefined Set type, see
Appendix 2 7.1 on sets). This set is not modeled as an Actor set, and we’ll see why.

In fact, actors are only perceived by the grid as entities receptive to interactions. Indeed, it
is easy to imagine that certain actors (e.g. a wallpaper) are impervious to any interaction
and therefore don’t need to be taken into account by the grid. Moreover, an entity receptive
to interaction is not necessarily an actor, it may simply be a cell. The Set<Actor> type is

25

therefore not entirely suited to modeling the content of a cell, and encoding this set calls
for new abstractions. In concrete terms, these are entities capable of interacting.
The toolkit offers the following interfaces, placed in the ch.epfl.cs107.play.areagame.actor
package :
o Interactable : this interface can be used to model any entity receptive to an inter-
action request ;

e Interactor : this interface models any entity that can interact with an Interactable.

As their name suggests, these two interfaces are intended to work in symbiosis, with the
Interactor designed to impose an interaction on an Interactable.

We assume that any grid entity (AreaEntity) must define itself as an object subject to
interaction. For this reason, AreaEntity implements the Interactable interface!

The entities attribute of a Cell is therefore not a set of Actor but a set of Interactable.
In particular, it contains a protected method enter for adding a given Interactable to
this set, and a protected method leave for removing a given Interactable from this set.

We will also differentiate between two types of interactions :

e contact interactions : take place between a Interactor and the Interactable located
in the same cells.

o distant interactions : take place this time between a Interactor and the Interactable
located in the cells of its field of vision.

To illustrate this difference, let’s take an example. Let’s imagine a situation with three
actors : two characters and a plate of ice. The two characters can interact in a distant way,
for example to chat; they don’t need to be in the same cell to talk to each other. On the
other hand, the characters can only interact with the plate of ice by contact : when they
enter the cell containing the plate of ice, they can slide.

For the time being, we will not be examining the content of the Interactor interface
(which is only needed to support interactions between actors, and which we’ll do in the next
step). Examine the code of the Interactable interface used to model an entity receptive
to interactions.

26

The proposed design models the fact that an Interactable :
« occupies a list of cells : method List<DiscreteCoordinates> getCurrentCells() ;

o when occupying a cell, can make it non-traversable by others (it can prevent other
Interactable from investing the cell it occupies) : method boolean takeCellSpace().
An Interactable for which boolean takeCellSpace() returns true will be called
"non-traversable” in the rest of this document (of course, whether it’s traversable or
not may depend on various conditions and need not always be true or false) ;

 indicates whether it accepts distant interactions : method boolean isViewInteractable() ;

« and indicates if it accepts contact interactions : method boolean isCellInteractable().

It is also considered that at the abstraction level of an AreaEntity, it is not possible to
concretely define the methods dictated by the Interactable interface.

Finally, note that Cell also implements Interactable to indicate that cells are also recep-
tive to interactions. At the Cell abstraction level, only the getCurrentCells method can
be redefined. It returns a list whose single element is the cell’s coordinates.

We'll come back to the other methods of the Interactable interface later.

5.5.3 The class MovableAreaEntity

Some of our grid actors will naturally be in motion. Unlike our SimpleGhost actor, they
will have to move in accordance with the constraints imposed by the grid.

The abstract class MovableAreaEntity in the package areagame.actor is derived from
AreaEntity and can be used to model this type of actor. Its main feature is the presence of
a move method enabling the actor to move continuously.

The parameter framesForMove is the number of frames (steps) chosen to implement conti-
nuity of movement. In concrete game implementations, we will introduce the possibility of
matching each step (frame) with a different graphical representation, thus animating the
move.

In order to take place, the move must be authorized by the Area and by each of the cells
that the entity will leave or enter during the move.

By definition, the move will always take place from the current main cell to a cell adjacent
to it, defined by the entity’s current orientation. The mobile actor moves one cell at a time,
and to ensure that it never finds itself between two cells, a move will always wait until the
end of the previous one before starting.

The role of the protected boolean move(int framesForMove, int frame) method is to
decide whether a move can take place and, if so, to initiate it. It returns true to indicate
that a move is in progress.

5.6 The area and its grid dictate their conditions

Now, it is time to look at how the grid and the area impose their conditions on the placement
and movement of the entities. Remember that each area is equipped with a grid. To do this
properly, the addition or removal of an actor from the area must take into account the
potential veto of the grid. For example, the grid should normally be able to oppose the
addition of an actor to a given cell. An actor whose number of cells is too large to be placed

27

in a desired position (grid overflow) should be refused by the grid and therefore not be
added as a new actor in the area. Similarly, the move method of the MovableAreaEntity
must allow the area or grid to express constraints on movement. Typically, it should at least
prevent an entity from leaving the grid. To dictate these conditions, we start from the idea
that the cell can dictate its conditions, which will impact the decisions of the grid to which
it belongs, and which in turn may impact the decisions of the area associated with the grid.

5.6.1 Conditions dictated by cells and grid

In order to allow a cell to express control over placement /movement, the Cell class contains
the protected abstract methods :

e boolean canEnter(Interactable entity) : returning true if entity has the right
to add itself to the cell contents and false otherwise;

e boolean canLeave(Interactable entity) returning true if entity has the right
to subtract from the cell content and false otherwise.

These methods, together with the grid’s knowledge of its dimensions, will enable it to
condition the movements and positioning of the Interactable that may occupy its cells.

5.7 Exercise 2 (continued : adding a character)

You now have (almost) all the basic logistics for coding grid-based games, including actors
(Phew!). To see this in action, you’ll now complete the coding of the game Tuto2.

So that the grid Tuto2Behavior can dictate its conditions to the actors in it, the cells of
Tuto2Cell will be characterized by the fact that they :

 only allow entering a cell if its attribute isWalkable is true (set canEnter() accor-
dingly) ;

 accept contact interactions (define isCellInteractable() accordingly);
« do not accept remote interactions (define isViewInteractable() properly);

 can always be left (define canLeave () properly).

5.7.1 Specific actors

We now need to create a grid game actor, GhostPlayer in ch.epfl.cs107.play.tuto2.actor.
This type of actor inherits from MovableAreaEntity. It accepts any type of interaction and
is not traversable.It also has the same behavior as the actor SimpleGhost (hit points, isWeak
method, and transition from one area to another when the number of hit points becomes
zero)”. It is also equipped with methods allowing it to :

« enter a given area by placing itself in a given position :

void enterArea(Area area, DiscreteCoordinates
position)

The algorithm works as follow :

"take directly from what you have done in the SimpleGhost class

28

1. register as an actor (taking the necessary steps to indicate the area to which it
belongs) ;

2. update its absolute position : setCurrentPosition(position.toVector()) ;

3. set itself to immobility (resetMotion).

« leave the area to which it belongs (unregister).
The GhostPlayer constructor will have the following signature :

public GhostPlayer (Area owner, Orientation orientation,
DiscreteCoordinates coordinates, String sprite)

coordinates is the cell occupied by the ghost when it was created. In order to be ins-
tantiated, a GhostPlayer must contain concrete definitions of the methods imposed by
Interactable and MovingAreaEntity.

@0verride
public List<DiscreteCoordinates> getCurrentCells () {
return
Collections.singletonlList(getCurrentMainCellCoordinates ());

3

For simplicity’s sake, we are assuming here that the actor occupies only his main cell.
The update method of GhostPlayer implements the following algorithm :

1. start moving or orienting according to the keys pressed by the user;

2. call the method update of the super-class (to actually perform the initiated move, if
necessary).
For step 1 of the above algorithm, the algorithm is as follows :

o if the button corresponding to the Keyboard.LEFT is pressed (isPressed) and if the
actor is oriented to the left, we initiate the movement to the left (call to move). Handle
this interaction directly in the update method of the actor (this is now possible because
an AreaEntity knows the area to which it belongs and therefore has access to its
getKeyboard () method).

« otherwise, we orient the actor to the left.
The number of "frames” used by move could be defined as a static constant :

/// Animation duration in frame number
private final static int ANIMATION_DURATION = 8;

We will proceed in a similar manner for all other orientations.

GhostPlayer will obviously have to have a specific drawing method, which will simply draw
the Sprite partner.

Finally, like Interactable, GhostPlayer must also provide an empty implementation of
acceptInteraction for the moment (like Tuto2Cell).

You will note that only the players in the grid games have access to the area to which
they belong.

29

doors in "zelda/Village” doors in "zelda/Ferme”

F1G. 6 : Description of doors

5.7.2 Character Placement

Complete Tuto2 so that this game is characterized by a GhostPlayer type character. The
character will be created when the game starts, with orientation Orientation.DOWN. It will
be recorded in the current area and the camera will be centered on it. Its update method
will simply implement the fact that if the character is too weak, he will transit to the next
area. This will do exactly the same as what was done in Tuto1l (if it was in Village it goes
into Ferme and vice versa).

update no longer needs to manage keyboard interactions, which are managed
directly in the update of the character.

You will use (2,10) as starting coordinates in Ferme and (5,15) in Village and these are
the same coordinates which will be used as starting coordinates each time the actor switches
back to these areas. You can use 13.f as a scaling factor, and it makes sense that this value
is a final static constant specific to the game, i.e. Tuto2.

5.7.3 Validation of the coded solution

You will verify that the GhostPlayer :
1. can move across the entire surface of the playing areas without leaving the grid ;

2. cannot walk on obstacle areas (all areas corresponding to black or gray in the associated
behavior image, typically water or barriers cannot be crossed)

3. is followed by the camera when moving;

4. can correctly transit from the area Village to the area Ferme and vice versa. For the
moment he will only do it based on his life points.
It would be natural for the character to transit from one area to another rather by passing
through areas corresponding to doors (see the figure 6). To do this, and to complete the tools
necessary for creating games, it is necessary to be able to properly model the interactions
that can take place between actors. This is the theme of the last tutorial.

30

6 Tutorial III

This third and final tutorial presents the design pattern to be used to code interactions
between actors. Beforehand, you can revisit your design by making good use of nested classes.
Some utility classes, which will be useful for you to tackle the mini-project, are also presented
at the end of the tutorial.

There will be no exercise per se, the concepts presented will be directly applied in the first
part of the mini-project.

6.1 A little "refactoring” using nested classes (optional)

Now that nested classes have been presented in class, you can, if you wish, improve the
design by ensuring that the concept of cell is inseparable from that of grid. The Cell
class would therefore become a public class nested in the AreaBehavior class. It would
then also be necessary to ensure that Tuto1Cell and Tuto2Cell become nested subclasses
of Tutol1Behavior and Tuto2Behavior. This will improve the encapsulation of the class
Cell : its methods cellInteraction0f and viewInteractionOf can thus become private
because they are in principle not useful outside the grids. The constructor can become
protected.

The cell models themselves remain public classes because to manage the interactions that
the actors can have with the cells they must be able to access them.

6.2 Tutorial solution

To access the tutorial solution, all you need to do is install a new
IntelliJ project using the archive : tuto-solution-2025.zip
To install the project on IntelliJ :

1. unzip this archive into a directory of your choice;

2. open the directory TUTO-SOL-2025;

3. delete the archive solution.zip.
For Eclipse, once the archive is unzipped, create the project using the
"From existing sources" option and indicating the host directory
as the root of the project. The tutorial solution can be found in
the game.tutosSolution package. The new version of AreaBehavior
nests the Cell class. The solution provided in tutosSolution is based
on this concept,

To start the project, you will draw inspiration from the correction in tutorial 2. Read it.

6.3 Interactions between actors

In our previous game, it would have been natural to allow our main character to transit
from one area to another via places with a “passage” visual (red pixels). A simple way to
do this would have been to use the color of the pixels of the image associated with the grid

31

https://proginsc.epfl.ch/wwwhiver/mini-projet2/tuto/tuto-solution-2025.zip

to give specific behavior to the character based on this color. However, it is not very good
to do this for several reasons :

o this implies that the grid must communicate specific information to the characters
(for example provide a method boolean isDoor(int i, int j) allowing to know if
a given cell corresponds to a red pixel (not general enough : what happens if the color
red has to be interpreted differently at another level of the game?) ;

it is not certain that we necessarily want to exploit all the cells corresponding to a red
pixel as doors in our games;

 a place with a “passage” visual can correspond to different types of doors (we can for
example imagine having doors that open with a key, others that we can pass through
without conditions, etc.).
Therefore, it is preferable to instead create a actor Door to be placed (in general) on the red
zones (but not necessarily all). The interaction must then take place between two actors (a
“door /passage” actor and a “character” actor). We will now study the components of the
toolkit that can be used to manage interactions between actors.

6.3.1 The Interactors

So let’s say we want to create a game where a character can interact with a “door” actor and
a “tuft of grass” actor in the sense that he can go through the door and cut the tuft of grass.
The character must play a more active role by expressing whether he wants interaction or not
(for example, he is not forced to cut the grass). It will therefore be an entity which requests
an interaction. This particular category of actors, requesting interaction, can be modeled in
the toolkit using the Interactor interface. Open the Interactor interface. This interface
allows you to model an object :

e which occupies a list of cells and therefore has a method List<DiscreteCoordinates>
getCurrentCells() returning the coordinates of these cells;

o which has a certain number of cells in its field of view and therefore has a method
List<DiscreteCoordinates> getField0fViewCells() returning the coordinates of
the cells in its field of view;

e which indicates with a boolean method boolean wantsCellInteraction() if it re-
quests interaction from contact;

e which indicates with another method boolean wantsViewInteraction() if it re-
quests remote interaction ;

o which allows you to interact with a Interactable using the void InteractWith(Interactable,
boolean isCelllInteraction) method. The second parameter allows you to specify
the desired mode of interaction : by contact (parameter value true) or remotely
false).
Let us now see how this particular type of actor intervenes in the simulation. So far we’ve
only been concerned with a few lines in the update method of a play area (Area). Look
again at the code for this method and look at its update method. There you will see that
after the actor updates loop :

32

for (Actor actor : actors) {
actor.update(deltaTime) ;
}

the actual interaction management takes place :

for (Interactor interactor : interactors) A

if (interactor.wantsCellInteraction()) {
// ask the associated grid (AreaBehavior)
// to set up contact interactions

+

if (interactor.wantsViewInteraction()) {
// ask the associated grid to set up
// distant interactions

}

The AreaBehavior grid being the manager of all the mechanisms that take place there, it
is in fact up to it to provide the methods managing the interactions. This raises two new
issues : how are all the interactors defined/constructed ? (the variable interactors in the
code above) and how the grid intervenes to manage the interactions?

6.3.2 Set of Interactors

Any actor of type AreaEntity is likely to be receptive to interaction. This is why the class
AreaEntity already implements the Interactable interface. On the other hand, classes
that implement Interactor will rather be close to concrete objects (deciding whether an
object is willing to interact is rather done in a specific way). For example a game character
is a natural candidate to be an Interactor.

The actors playing the role of Interactor have a special role to fulfill. You must therefore be
able to distinguish them from the others. This is why the Area has an attribute interactors
logging all actors of type Interactor. If you take a closer look at its addActor method, you
will see that it also has the role of populating the interactors attribute (and therefore to
categorize the actors according to whether they are Interactor or not). An actor of type
Interactor is recorded in the list of actors as well as in the interactors list.

It is not uncommon in programming to reference the same object from
multiple places. This allows you to manipulate the objects in question
from different points of view : a Interactor must be able to be seen as
a Actor so that we can apply its method update or as a Interactor
so that we can make him interact with the other actors.

6.3.3 Handling interactions at the grid level

The idea is therefore that it is ultimately up to the grid to set up the interaction mechanisms.
This is why the class AreaBehavior is equipped with the methods :

e public void celllnteractionOf (Interactor interactor) : which manages all contact

interactions between interactor and the Interactable in the same positions as those
he occupies.

33

e This method loops through all cells at positions
interactor.getCurrentCells() and apply a method to them
cellInteractionOf (interactor) specific to Cell.

e public void viewInteractionOf (Interactor interactor) : which manages all re-
mote interactions between interactor and the Interactable of his field of vision.
This method loops through all cells at positions interactor.getField0fViewsCells ()
and applies a method viewInteractionOf (interactor) specific to Cell.

These two methods allow the Interactor (as a parameter of these two methods) to listen
to the grid. They require the following methods to be present in Cell :

e private void cellInteractionOf (Interactor interactor)

e private void viewInteractionOf (Interactor interactor)
Here is how the code for the first of these methods looks like :

private void cellInteractionOf (Interactor interactor){
for(Interactable interactable : entities){
if (interactable.isCellInteractable())
interactor.interactWith(interactable, true);

}

where entities represents the entire Interactable listed in the cell. The second method
is coded in the same spirit.

6.4 Generic interactions

Now we’ve reached the core topic : how to actually implement the method :

void interactWith(Interactable other, boolean
isCellInteraction);

for a Interactor given?

Let’s place ourselves in a more general context where we have to implement a main character
interacting with other actors. Let’s call it MyPlayer. It will typically be a Interactor; that
is, an entity that invites interactions. How could we a priori define our specific method
void interactWith(Interactable other, boolean isCellInteraction) so as to allow
him to interact with actors Door (door) and Grass (tuft of grass)?

The trivial way to do this would be to resort to type tests :

void interactWith(Interactable other, boolean isCellInteraction){

if (other instanceof Grass() && !isCelllInteraction) // remote interaction
with grass...

if (other instanceof Door && isCellnteraction) //contact interaction with
the door...

}

which is very ad hoc and not very scalable. In fact, when programming a game, all Interactor
can potentially interact with all other possible players in the game and all cases must be
considered. There is a design diagram® classically used in this type of situation where there

8Commonly called the “visitor” design pattern

34

are actions to be performed on all kinds of objects which do not necessarily have links
between them. It consists of delegating the management of these actions to an external
class which we would here call the character interaction manager :

/* manages MyPlayer's interactions with all actors */

class MyPlayerHandler {

public void interactWith(Door door, boolean isCellInteraction) {
// fensure that the door is passed by the actor

}

public void interactWith(Grass grass, boolean isCellInteraction){
// makes sure the grass is cut

}
}

This handler is specific to MyPlayer, in our case it would be coded as an internal private
class of this class.
The class MyPlayer would have its interaction manager as an attribute :

private final MyGamePlayerHandler handler;

and a generic method :
/ *

asks other to agree to have their interactions

with MyPlayer managed by handler

*/

public void interactWith(Interactable other, boolean isCellInteraction) {
other.acceptInteraction(handler, isCelllInteraction);

}

Each Interactable must then offer a method indicatting if it accepts the interaction
handled by handler. For example in Grass we would have :

public void acceptInteraction(MyPlayerHandler v, boolean isCellInteraction)

{

// asks the handler v to manage the interaction with Grass (this)
v.interactWith(this, isCellInteraction);

3

This solution offers the advantage of being able to code a single, very general method in
Interactor, the method interactWith(Interactable, boolean isCelllInteraction).
Only one downside is left, the argument of acceptInteraction in Grass is still too specific :
we should add a method acceptInteraction with the handlers of each Interactor possible
(here we only have one Interactor, but nothing prevents us from introducing others).

The idea is therefore to instead resort to the diagram in figure 7.

! game. areagame. handler ::

ArealnteractionVisitor (interface)
définit une méthode généngue dinteraction avec
Interactable

+interactWith(Interactable,isCellInteraction:boolean): void

:_gjanTe_. al r;_n g_ .handIer:,
ARPGInteractionVisitor (interface) B
Donne des définitions par défaut aux inferactions

entre un Interactor et tous les acteurs possibles
de jeu qui nous intéresse (ici Ie jeu "ARPG")

¥
- +interactWith(Door,isCellInteraction:boolean): wvoid
- +interactWith(Grass, isCellInteraction:boolean): void
P £...()
L
=) game.arpg.actor:'

ARPGPlayer. ARPGPlayerHandler
definit les interactions specifiques a
lnteractor ARPGPlayer

+interactWith(Grass,isCellInteraction:boolean): void
+interactWith(Door, isCellInteraction:boolean): void

Fia. 7 : Class diagram for setting up interactions

Therefore, MyPlayerHandler inherits from a more general interaction managers. In this way;,
Interactable must offer only one additional method :

public void acceptInteraction(ArealnteractionVisitor v, boolean
isCellInteraction) {
// with a simple default definition

b

The interface AreaInteractionVisitor models a generic interaction manager for which we
can imagine a default implementation which is provided in the areagame.handler package.
The method acceptInteraction by Grass (or Door) would then be written simply :

public void acceptInteraction(ArealnteractionVisitor v,
boolean isCellInteraction) {
((MyGameInteractionVisitor)v).interactWith(this, isCellInteraction);

}

There is a typecast to be carried out, but only one. This typecast allows interaction mana-
gement to be delegated to the game-specific manager to which Grass participates.

This indicates that the tuft of grass agrees to have its interactions managed by the specific
interaction manager MyGameInteractionVisitor and whose MyPlayerHandler is a concrete

36

F1G. 8 : Example of a behavioral image representing a maze (walls in black) and a graph
representing the connections between passable cells (in white)

implementation. This handler expects that any Interactor can have interactions with each
actor in the game. Adding a new actor involves updating the MyGameInteractionVisitor
handler and only the Interactor who would like an interaction with this new actor. The
other actors, however, do not undergo any modification which was not the case with the
abovementioned possible solutions.

Figure 7 graphically summarizes the suggested design scheme for managing interactions
between actors. The second part of the project will allow you to concretely implement this
design pattern. In particular, you will be given precise instructions on where to place the
classes mentioned in the diagram presented and how to code them.

The components of the mockup below are useful for coding the project or extensions. Skim
over this material quickly at this time to make yourself aware of their existence and return
to them as you need for the project.

6.5 Class AreaGraph

The class AreaGraph from the package game.areagame allows you to associate a connected
graph with a game grid. This can be used to simulate a barebone artificial intelligence for
the movement of actors (actors who move following a path).

The class AreaGraph offers in particular the method :

Queue<0Orientation> shortestPath(DiscreteCoordinates from,
DiscreteCoordinates to)

which allows you to find the shortest path between a starting point and a destination point
in the graph associated with a grid. This path is described as a queue of Orientation. This
is the sequence of orientations to follow to arrive at the cell to starting from the cell from.
Queues are implemented in Java using the Queue (https://docs.oracle.com/en/java/
javase/11/docs/api/java.base/java/util/Queue.html). Suppose an actor moves on a
grid associated with a graph graph. If this actor occupies the coordinate cell start and he
wants to go to the coordinate cell stop, orientation nextOrientation that he must adopt
is given by :

Queue<Orientation> path = graph.shortestPath(start, stop);

37

https://en.wikipedia.org/wiki/Queue_(abstract_data_type)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Queue.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Queue.html

Orientation nextOrientation = path.poll();

The poll method of Queue allows you to extract and delete the head of the queue.

6.6 Classes RPGSprite and Animation

You used the class Sprite in a simple way to graphically represent the main character of
the game. Other classes are available to refine the graphic representation of objects.

For example, the RPGSprite class models a Sprite with a depth. It can be used to place
the character in front or behind an object.

Furthermore, a Sprite or RPGSprite does not necessarily correspond to a unique represen-
tation.

A complex image can also be composed of several sprites. For example, the image of figure
9, is made up of 4x4 small Sprite size 16x32. It can be divided into sets allowing different
views of the characters or animations

SO8C
¢20¢
seee

TR

F1Gc. 9 : Example of an image used as a basis for animations

For example, the top line which allows you to animate downward movements can be obtained
like this :

spritesDOWN[i] = new Sprite("zelda/player”, 1, 2, this, new
RegionOfInterest (i*16, 0, 16, 32));

for i ranging from 0 to 3.

The concept of animation, offered by the class Animation from the engine.actor package in
game-engine, is characterized by a set of Sprite to be displayed in turn. Its update method
allows you to choose which element/frame of the set is the current element. This is the one
that will be displayed if we call the draw animation method. It is possible to influence
the speed at which the frame changes when calling update, using the frameDuration
attributes and speedfactor (and associated methods). For example, the main character
can be associated with 4 animations allowing us to animate him when he moves up, down,
left or right. Drawing the character boils down to drawing the 4 animations associated with
it.

Animations can of course be associated with any actor. For example, a torch can offer an
animated visual giving the impression that its flame is moving.

Instead of animating the actors, we can at least orient them visually by choosing the Sprite
specific to the orientation.

You will notice that the RPGSprite offers some useful methods for extracting Sprite of a
complex image or the creation of animations from Sprite tables. In particular, extractSprites ()
and createAnimations().

So if we want to create animations corresponding to the up, down, left, right orientations of

a character, we can do something like this :

Sprite[][] sprites = RPGSprite.extractSprites("zelda/player”,
4, 1, 2,
this, 16, 32, new Orientation[] {Orientation.DOWN,
Orientation.RIGHT, Orientation.UP, Orientation.LEFT});
// creates an array of 4 animations
Animation[] animations =
Animation.createAnimations (ANIMATION DURATION/2, sprites);

where ANIMATION_DURATION is the number of frames used for the movement (here we go
from one animation to another every two movement steps).

You will note that the toolkit provides a higher-level abstraction which simplifies the use of
animations attached to an oriented entity, namely the OrientedAnimation class.

6.7 Signals

The interface Signal is provided in the signal package. It very simply models a signal as
an entity with an intensity (a value of type float between 0.0 and 1.0). Any object, actor
or not, implementing the Signal represents a signal whose intensity value can be used, in
various ways, to make decisions. See the code for this interface in the signal package. We
also invite you to skim through the different types of signals provided in the same package.
You will notice that the interface Logic offers in particular two constants of type Logic (yes
Java allows recursive definitions!) : the constant TRUE and the constant FALSE.

Here are some explanations about the following code :

Logic TRUE = new Logic() {

@0verride

public boolean isOn() {

return true,

}
s
(in particular, do we have the right to instantiate an interface 77)
This code means that we create the instance of an anonymous class (without name),
implementing the interface Logic and where the isOn method is redefined. TRUE is therefore
an instance of this anonymous class (and not of the interface!). The constant FALSE is defined
analogously. So Logic.TRUE represents an always-on signal (which can be assigned to a
variable of type Logic) and Logic.FALSE represents a signal that is always disabled.
It is possible to code actors whose behavior depends on signals. For example, a “door” actor
which would be opened or closed depending on whether a “key” actor has been picked up

39

or not. The “key” actor would be a signal (ON when picked up by the player and OFF
otherwise) and the door would have the key as an attribute conditioning its opening.

(3:(9)

(4, 1)

[}

F1G. 10 : The view on a targeted part of the grid is obtained by an affine transformation of
the window (here a simple translation)

7 Appendices

7.1 Appendix 1 : ”Positionable” objects, transformed objects and
graphic objects

The positioning and display of simulated elements in the simulation window are obviously
crucial elements.

First, when positioning simulated objects, it is not practical to think in pixels : this makes
us dependent on the size of the window, which is counter-intuitive ; our simulated universe
will probably be larger than what we want to display.

Instead, we are going to express everything relating to positions, dimensions etc in terms
of the simulated grid axis and not in terms of pixels in the window. As the grid can be
larger than the display window, we are going to subject the latter to affine transformations
(translation, zoom etc.) to enable us to focus on a specific part of the world (see Figure 10).
The display window is a typical example of an element that needs to be positioned /modified
in the absolute frame by means of transformations. In fact, all elements to be positioned in
the absolute frame can be positioned in the same way (e.g. shapes or images to be drawn).

To meet this need, the toolkit provides the following elements :

e The Positionable interface describes an object whose absolute position can be ob-
tained by means of an affine transformation (Transform class). A Entity is typically
a Positionable

41

o The Attachable interface describes a Positionable that can be attached to another
(its parent). This is done using the setParent method. It is characterized by a relative
transform, which indicates how the object will be positioned in its parent’s reference
frame (or in the absolute if it has no parent).

o The Node class is a simple implementation of the Attachable interface.

The getTransform() method applied to a Positionable allows you to locate it in its
local /relative reference frame.

In addition, the API provides classes such as ch.epfl.cs107.play.engine.actor, TextGraphics,
ImageGraphics and ShapeGraphics which implement the notion of "drawable” objects
(Graphics). A Graphics can be attached to an Entity using the setParent method. If a
graphic object is attached to an entity, its drawing will necessarily take place in that entity’s
reference frame, with no need to explicitly place it there by means of a transformation (you

have an example of this with the text attached to the rock in the first exercise, Demo1).
However, it is sometimes necessary to specify the anchor point of the graphic object in
relation to the entity that serves as its parent (i.e. how far the image must be offset from the
origin in order to be superimposed cleanly on the entity). Take a look at the implementation

of the API to see how this notion of anchor point is put into practice.

Appendix 2 : Useful data structures

There are many different data structures. For example, in this course, you learned how to use
dynamic arrays via the ArrayList class. In reality, ArrayList is a special implementation
of the abstract data structure List.

Data structures are provided in Java in the form of :

o An interface that describes the functions usually accepted for the data structure in
question. For example, the ability to add an element at the end of a list in the case of
lists. In the case of lists, the interface that describes these functions is List

o A very general basic implementation of this interface in the form of an abstract class :
Abstractlist for lists.

» Several specific implementations derived from the abstract class, e.g. ArrayList or
LinkedList for lists. Each of these specific implementations has its own particularities,
so you’ll want to use one rather than the other, depending on the context. For example,
LinkedList offers add or delete operations after a given element in constant time
(O(1)), but does not offer the possibility of accessing an element at a given position in
constant time. For ArrayList (”table list”) the opposite is true. You'll therefore tend
to prefer LinkedList (”chained list”) if there are more add or delete operations than
those requiring direct access.

Some data structures are more appropriate than others, depending on the situation. We’ll
briefly describe two more that will prove useful in this mini-project (a more in-depth
presentation of these data structures and their characteristics will be given in the second
semester).

Associative tables

Associative tables ("map”) generalize the notion of index to non-integer types. They can be
used to associate values with keys.

For example :

import java.util.Map;
import java.util.HashMap;
import java.util.Map.Entry;

/...

// String is the key type and Double is the value type

Map<String, Double> grades = new HashMap<>();

grades.put ("CS107", 6.0); // maps key "CS107" to value
(note here) 6.0

grades.put("CS119", 5.5);

// .. ditto for other courses to which you'd like to

associate your grade

// Three ways of iterating over the contents of the map

for (String key : grades.keySet()) {
//iterate on keys

43

System.out.println(key+ " " +grades.get(key));

}

for (Double value : grades.values()) {
//iterate on values
System.out.println(value);

}

for (Entry<String,Double> pair : grades.entrySet()) {
//iterate on key-value pairs
System.out.println(pair.getKey() + " " +
pair.getValue());

3

The key of a Map can therefore be seen as a generalization of the notion of index. The
Java interface that describes the basic functionality of associative tables is Map, while the
concrete implementation we’ll be using is HashMap.

Sets

It is sometimes necessary to manipulate a collection of data as a set in the mathematical
sense ; that is, where each element is unique. For example, if we want to model the set of
vowels, there’s no reason why the letter 'a' should appear twice. The method of adding an
element to a set ensures that the element is not added if it was already there :

import java.util.Set;
import java.util.HashSet;

/] ...
Set<Character> voyels = new HashSet<>();
voyels.add('a'); // voyels -> {'a'}
voyels.add('u'); // voyels -> {'a', '
voyels.add('a'); // voyels -> {'a', '

u'}

u'}

// display: a u

for (Character letter : characters) {
System.out.print(letter + " ");

¥

The Java interface that describes the basic functionality of sets is Set, the concrete imple-
mentation we’ll be using is HashSet.

7.2 Appendix 3 : Graphic resources and level editor

More images You are free to use other images, either of your own creation or collected
from the web. In such cases, it is essential to cite the origin!

Level editor Play areas have a background image superimposed on an image dictating
their behavior (pixel color) :

44

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
https://docs.oracle.com/javase/8/docs/api/java/util/Set.html

background image corresponding "behavior”

We have provided a few examples in the src/main/resources resource file, where the
images/background/ folder contains background images and each of these images corres-
ponds to a possible "behavior” image in the behaviors/ folder.

It is obviously interesting to be able to create new images. If you wish (this is not required as
part of the project), you can use the simple level editor proposed by Bastien Chatelain and
completed by Sami Abuzakuk (course assistants) : https ://proginsc.epfl.ch/wwwhiver /mini-
projet2/LevelEditor.zip [Link to an eclipse project archive].

45

https://proginsc.epfl.ch/wwwhiver/mini-projet2/LevelEditor.zip
https://proginsc.epfl.ch/wwwhiver/mini-projet2/LevelEditor.zip

	1 Introduction
	2 Overview of the toolkit's architecture
	3 Setting up mini-project 2
	4 Tutorial I
	4.1 !Playable!
	4.2 Simulation loop
	4.3 Grid games
	4.4 Play Areas : class !Area!
	4.4.1 Transition from one area to another
	4.4.2 Camera management

	4.5 Games with areas : class !AreaGame!
	4.6 Generic actors
	4.7 Exercise 1: first “game with areas”
	4.7.1 First concrete actor
	4.7.2 First concrete play areas
	4.7.3 First game with concrete areas
	4.7.4 Main character
	4.7.5 Controls

	5 Tutorial II
	5.1 Let's talk a little about interfaces
	5.2 Grid and cells
	5.3 Actor for "wallpaper"
	5.3.1 Exercise 1 (continued: adding a wallpaper)

	5.4 Exercise 2: first grid game
	5.4.1 Specific grids
	5.4.2 Specific play areas
	5.4.3 Tuto2

	5.5 Grid game players
	5.5.1 !AreaEntity!
	5.5.2 Interfaces !Interactor! and !Interactable!
	5.5.3 The class !MovableAreaEntity!

	5.6 The area and its grid dictate their conditions
	5.6.1 Conditions dictated by cells and grid

	5.7 Exercise 2 (continued: adding a character)
	5.7.1 Specific actors
	5.7.2 Character Placement
	5.7.3 Validation of the coded solution

	6 Tutorial III
	6.1 A little "refactoring" using nested classes (optional)
	6.2 Tutorial solution
	6.3 Interactions between actors
	6.3.1 The Interactors
	6.3.2 Set of !Interactors!
	6.3.3 Handling interactions at the grid level

	6.4 Generic interactions
	6.5 Class !AreaGraph!
	6.6 Classes !RPGSprite! and !Animation!
	6.7 Signals

	7 Appendices
	7.1 Appendix 1 : "Positionable" objects, transformed objects and graphic objects
	7.2 Appendix 3 : Graphic resources and level editor

