
CS-107 : Game engine elements
J. Berdat, B. Châtelain, Q. Juppet and J. Sam Version 1.0.0

This English version of the tutorial was generated using a tool for automatic
translation. The reference document remains the French version. In case
something is unclear in the English version please refer to the French one or ask
questions

Table des matières
1 Introduction 3

2 Overview of the toolkit’s architecture 3

3 Setting up mini-project 2 5

4 Tutorial I 7
4.1 Playable . 7
4.2 Simulation loop . 7
4.3 Grid games . 8
4.4 Play Areas : class Area . 9

4.4.1 Transition from one area to another 10
4.4.2 Camera management . 10

4.5 Games with areas : class AreaGame . 10
4.6 Generic actors . 11
4.7 Exercise 1 : first “game with areas” . 11

4.7.1 First concrete actor . 12
4.7.2 First concrete play areas . 13
4.7.3 First game with concrete areas . 14
4.7.4 Main character . 15
4.7.5 Controls . 15

5 Tutorial II 18
5.1 Let’s talk a little about interfaces . 18
5.2 Grid and cells . 19
5.3 Actor for ”wallpaper” . 20

5.3.1 Exercise 1 (continued : adding a wallpaper) 21
5.4 Exercise 2 : first grid game . 21

1

5.4.1 Specific grids . 22
5.4.2 Specific play areas . 23
5.4.3 Tuto2 . 24

5.5 Grid game players . 24
5.5.1 La classe AreaEntity . 24
5.5.2 Interfaces Interactor and Interactable 25
5.5.3 The class MovableAreaEntity . 27

5.6 The area and its grid dictate their conditions 27
5.6.1 Conditions dictated by cells and grid 28

5.7 Exercise 2 (continued : adding a character) 28
5.7.1 Specific actors . 28
5.7.2 Character Placement . 30
5.7.3 Validation of the coded solution . 30

6 Tutorial III 31
6.1 A little ”refactoring” using nested classes (optional) 31
6.2 Tutorial solution . 31
6.3 Interactions between actors . 31

6.3.1 The Interactors . 32
6.3.2 Set of Interactors . 33
6.3.3 Handling interactions at the grid level 33

6.4 Generic interactions . 34
6.5 Class AreaGraph . 37
6.6 Classes RPGSprite and Animation . 38
6.7 Signals . 39

7 Appendices 41
7.1 Appendix 1 : ”Positionable” objects, transformed objects and graphic objects 41
7.2 Appendix 3 : Graphic resources and level editor 44

2

1 Introduction
To implement the second mini-project, the course provides you with a simple toolkit. This
toolkit is a basic game engine for creating 2D games, in particular grid-based games [Link]
which can be adapted to a wide range of variants, inspired by examples such as :

Pokémon Emerald [Link] Super Pacman [Link]

The time and knowledge required to implement an entire game of this type is indeed beyond
the scope of our course. Moreover, learning how to work with and exploit existing code is
an integral part of learning object-oriented programming.
The aim of this document is to help you understand the contents of the toolkit provided. It
will then serve as a basis for the implementation of your second mini-project.

2 Overview of the toolkit’s architecture
The architecture of the toolkit is outlined in the diagram in Figure 1.
A brief description of the packages supplied is given below. The code and its documentation,
together with this tutorial, should answer the details, giving you the opportunity to access
code from more experienced programmers1.
You are not required to consult this material now, but to return to it as you read this tutorial,
and as you code the mini-project, as and when you need to, according to our indications.
You’ll also find some useful additional information in the appendices (see section 7.1).

• The io package contains a number of utilities for handling file-based I/O. Typically,
the images that will be used to represent the entities populating our games are stored
in files, and these utilities will make it possible to read these files and exploit them.

• The math package models mathematical concepts such as vectors, affine transfor-
mations and random variables. This package also includes various concepts of two-
dimensional geometry, such as lines, circles, polygons etc. These concepts can be
used in mathematical calculations or for representing graphical elements. Points and
sizes are always given in floating values, to get as close as possible to the continuous
geometric plane we’re trying to simulate. To maintain consistency with basic geometric
notions, the vertical axis oy will by definition be oriented upwards and the horizontal
axis ox to the right.

1Always in the spirit of learning by example, even if it’s not required to understand all the code provided
in detail.

3

https://infogalactic.com/info/Tile-based_video_game
https://www.pokepedia.fr/Pok%C3%A9mon_Version_%C3%89meraude
https://pacman.fandom.com/wiki/Super_Pac-Man

Fig. 1 : Main project packages. This tutorial will essentially introduce you to the game,
areagame and signal packages.

• The package window : provides the abstractions Window, Canvas (drawing area),
Mouse, Keyboard etc. which model the basic elements of the graphical interface. The
SwingWindow class in the swing directory is a concrete realization of the window
concept based on Java Swing components. Objects with access to the canvas can
request the drawing of an image, shape or text. A request adds a graphic item of the
corresponding type to a list which will be sorted and rendered/drawn the next time
the window is updated. The list is then emptied, pending requests for the next update.
Similarly, objects with access to the audio context can request that a sound be played.
This represents a dynamic video game window that will probably (for most games at
least) be refreshed at a relatively high frequency (20 to 60 times per second). These
drawing requests for graphical items will therefore need to be reiterated regularly,
ideally once before each refresh, for as long as they need to be rendered. The graphic
result obtained at the end of each update is called frame (we will then say that the
game is between 20 and 60 ”frames” per second).

• The engine package contains fundamental abstract elements of the game engine
(mainly abstract ”actor” models).

• The areagame package builds on the material of the package engine to model games
played on a grid. This will be the type of games that will keep you busy throughout
this tutorial. The work to be carried out in the mini-project consists of using the
contents of the areagame package and extending it.

4

• The signal package will be used to include signal-related components, mainly logic.
Under this link, you’ll find the javadoc of the code provided.
This tutorial is structured in 3 parts, which should be read according to the schedule
suggested in the exercise statements :

• the first part describes the modeling of the notion of a game on a grid, which involves
defining what a game area is and its associated grid ; it also describes the concept of
actor at an abstract level ;

• the second part explains how the concept of interface is used to model these elements at
a sufficiently abstract level to make them usable in different contexts ; it also describes
more precisely the notion of grid and the specificities of actors evolving on grids ;

• the last part describes the schema used to implement interactions between actors ;
again at a sufficiently abstract level ; it also illustrates how the notion of nested classes
is used for better encapsulation in certain parts of the code.

3 Setting up
To follow this tutorial, you need to install the code provided in an Intellij project.
You’ll find the necessary instructions below.

For the tutorial and the project, and to avoid rendering problems, be sure
to set your IDE to UTF-8 (see ”Setting character encoding” in the IntelliJ
configuration guide or the Eclipse configuration guide).

5

https://proginsc.epfl.ch/wwwhiver/mini-projet2/JavaDoc/index.html
https://proginsc.epfl.ch/wwwhiver/series/serie02/ex1/task.html
https://proginsc.epfl.ch/wwwhiver/series/serie02/ex1/task.html
https://proginsc.epfl.ch/wwwhiver/series/serie02/ex5/task.html

The material provided can be found in the archive : tutoriel-2024.zip
To install the projector on IntelliJ :

1. unzip this archive in a directory of your choice ;

2. opem in IntelliJ the directory TUTO-2024 ;

3. delete the archive tutorial-2024.zip.
For Eclipse, once the archive has been unzipped, create the project using the "From existing sources "
option, specifying the host directory as the project root.

• The material provided consists of two folders : game-engine
which contains the toolkit properly speaking, and tutos which
is the folder where you will do the exercises.

• It is normal for the project not to run properly : the game
to be launched is initialized to null in the Play.java file in the
tutos folder. You will correct this issue as you progress through
the tutorial.

• You will not modify the contents of the game-engine
folder.

• Take advantage of the search functions in IntelliJ
(for example, right-click on an identifier and then
Go to > Declaration or usage can be very useful).

• Simple rules to remember :

– The contents of the model should be consulted in the
packages of ch.epfl.cs107.play of the game-engine
folder.

– The graphics resources provided are in the folder
src/main/resources of the folder tutos.

– The exercises are to be done in subpackages of
ch.epfl.cs107.play of the tutos folder.

– Learn how to explore the facilities of your development tool.

The 3 parts of the tutorial presented in the following, as well as the statement for mini-project
2, will show you what you need to consult and complete.

6

https://proginsc.epfl.ch/wwwhiver/mini-projet2/tuto/tutoriel-2024.zip

4 Tutorial I
The aim of this first tutorial is to get you started investigating the concepts provided by the
toolkit. It explains in broad terms what a ”game” is in the chosen design and how its evolves
over time in the simulation loop of the provided main program, Play. It also explains how
a play area is modeled, and how some very rudimentary actors can take part in it. It is
recommended to open the relevant code, essentially in the engine and aregame packages,
and examine it in parallel with reading the explanations given. Once you’ve familiarized
yourself with the concepts, you’ll be asked to code a basic ”game” as an exercise.

4.1 Playable

The toolkit supplied (game-engine), uses the abstract concept of a ”playable element”
(Playable of the sub-package engine). A Playable can be a complete game, an area within
the game, etc. This is a fairly high-level abstraction, meaning that for a program element
to be ”playable”, it must be able to :

1. evolve over time (i.e. have an update method :
void update(float time)) ;

2. start properly (that is to say, initialize in particular by incorporating all the entities
that are likely to evolve there) ; this requires access to a graphical context/window and
a file system to fetch resources, such as images for example (presence of a method :
begin(Window window, FileSystem filesystem)) ;

3. and end cleanly ; that is to say, implement a certain number of actions which cha-
racterize its end ; this can be an end message appearing on the screen or any other
relevant action (presence of a end method).

A “playable element” will also be characterized by a name, a character string returned by a
getTitle() method.
The concept of Playable is coded using the notion of interface Java and we will come
back to it when this has been covered in class. For the moment it is only the concept as
such that interests us and not its concrete implementation. Think of it as an abstract class
incorporating the elements mentioned above.
Note that Game, which models the notion of “game” is a kind of Playable with the addition
of a refresh rate.

4.2 Simulation loop
Someone wishing to “launch” a “game” should then proceed as in the main example program
provided in Play.java :

• Create a game instance (line 31 currently commented), a file system (line 28) and a
window/graphical context (line 34).

• Then, launch the game with begin by passing the file system as parameters to connect
it to the outside world and the window to give it access to a graphic (and audio)
context.

7

Fig. 2 : A AreaGame a-a set of Area. Each Area has-a grid (AreaBehavior). Each grid is
made up of cells (Cell) which it is responsible for creating.

• Once the game is launched, and depending on the requested refresh rate, the game and
the window will be updated one after the other (lines 66 to 71). Refreshing the window
consists of redrawing its content from a list of graphical items (automatically) emptied
after each iteration. It is the role of the game, during its own draw method, to make
drawing requests (and sound) to supply this list in anticipation of the next frame. For
the game, updates consist of refreshing all of its components (e.g. repositioning them)
based on the time since the last call.

At the end of the game its end method must be invoked (line 74).

4.3 Grid games
The tools provided in the engine package allow you to implement games wherever you
want :

• that an indeterminate number of actors can intervene (characters, characteristic ob-
jects, etc.) ;

• that the playing area of the game is not confined to the physical window alone ;

• and that the actors can interact physically in a simple way (use of simple concepts to
manage physical collisions and characterize the areas of interaction between actors).

Games that take place on a grid offer the advantage of significantly simplifying the last point
(management of collisions and interactions) and it is on this basis that we will start with
the coding of this year’s mini-project2.
This tutorial will therefore essentially describe the classes made available in the toolkit to
model “grid games”.

2note that the toolkit also potentially allows the programming of “games” detached from the notion of
a grid

8

To summarize :
• AreaGame : ”grid game” concept.

• Area : area of an AreaGame. An AreaGame potentially contains several Area.

• AreaBehavior : grid associated with an Area (each area of the game has a characte-
ristic grid).

Concretely, as shown in the figure 2, the code of the toolkit makes it possible to model games
that take place on a grid (AreaGame), and that are composed of a set of zones called Area
(section 4.4). Each Area corresponds to a two-dimensional grid composed of cells (Cell) in
which actors/components (Actor) will evolve and interact.
With the aim of visually resembling certain Game Boy type games, and as said above, this
grid is introduced in particular to simplify the management of interactions between actors
as well as their movements : this is the cell and its content which condition interactions (as
opposed to an approach managing interactions by detecting “physical” collisions between
actors in a completely continuous model of the world, for example).
An Area is therefore in a way a more or less independent game, that is to say a “playable
element” too, with a set of actors. To avoid overloading this class, it does not have direct
knowledge of the grid that defines it. It delegates this knowledge as well as all its functio-
nalities to a class AreaBehavior (section 5.2). Therefore, each Area has an AreaBehavior
which manages the behavior and mechanics of the area with its grid, its cells and their
content.
In the following you will find some explanations concerning the Area classes and AreaGame.
The explanations on AreaBehavior will be given to you in tutorial II (section 5).

4.4 Play Areas : class Area

The abstract class Area provided in the areagame.area package models a (playable) area
in a grid game. Open Javadoc and search for this class (small search window at the top
right)3 to examine it in broad terms. Also feel free to open the code itself as provided.
An Area, is a “playable” element, and will therefore naturally have the methods begin, end
and update mentioned above.
An area has a list of actors (those who operate there, Actor). It has an associated grid
(AreaBehavior) which crisscrosses the playing area and on which the actors will move.
Among the fundamental methods to remember :

• begin which carries out all the initializations necessary for starting a playable area ;

• update which makes the actors evolve (by invoking their own update method) ;

• draw which renders the actors by drawing them and playing their possible sound effects
(actors’ beep and draw method) ;

• registerActor and unregisterActor which allow you to add/remove an actor from
the list ;

• end which carries out all the actions to be carried out when the game on the current
area ends.

3do not hesitate to use the Javadoc for the rest of mini-project 2

9

https://proginsc.epfl.ch/wwwhiver/mini-projet2/JavaDoc/index.html

4.4.1 Transition from one area to another

The games that interest us are supposed to be composed of several areas of which only
one (the current area) will be played at a time. When moving from one area to another,
several strategies can be considered : if we return to an area already played before, we can
for example either restart the game on this area from the beginning or in the state in which
it had been left. To do this, the Area offers the following methods :

• void suspend() which by default does nothing but which, once redefined, can imple-
ment any specific strategy to be implemented when leaving one play area to move to
another (such as possibly saving information on the state of the game play area) ;

• boolean resume(Window window, FileSystem fileSystem) which returns true by
default but which, once redefined, can allow the game to be resumed on an area from a
possible intermediate state where it would have been left. The return boolean indicates
whether resuming play on the area was possible or not.

4.4.2 Camera management

A play area can be large and larger than what is visible in the window. It is therefore
necessary to allow the view to be placed at a precise location in a given area and according
to a given scale factor. Among the important methods :

• getCameraScaleFactor() an abstract method which can be redefined in subclasses
to return the desired scale factor (depending on its value the view is more or less
”zoomed”) ;

• setViewCandidate which allows you to center the view on an actor. This is what will
allow the camera to follow a character in numerous areas, such as you will be able to
experience in your first drafts of the game.

4.5 Games with areas : class AreaGame

The abstract class AreaGame from the package areagame simply models the concept of “game
with multiple areas”. A game with several areas is also above all a “playable” element and
you will find the attributes and methods specific to this concept (attributes of type Window
and FileSystem, and methods update, begin and end).
You will also find there, an attribute allowing you to represent the set of areas which
constitute the game and an attribute representing the current playing area (which will be
the only one to be simulated) :

/// A map containing all the Area of the Game
private Map<String , Area > areas;
/// The current area the game is in
private Area currentArea;

As the data structure for all the areas, the Map type was chosen. (associative key–value
table) which will allow you to find a play area based on its name (getTitle) (see appendix
7.1).

10

The method getTitle of areas is very important because it is through this ”title” that
an area is identified (and it is also through this that the link of the area with some of the
resources that are useful to it will also be made).

The method update just updates the current area.
Among the important methods :

• addArea() which allows the dynamic addition of areas to the game ;

• setCurrentArea which allows you to choose the current (simulated) area among all
the areas ; its second parameter allows you to indicate whether when you move to this
area you want to restart it (parameter forceBegin to true) or continue it where you
left it during a possible previous passage).

4.6 Generic actors
The proposed toolkit makes it possible to program games featuring actors acting in various
ways. These can have all kinds of variations, ranging from a simple geometric piece (like in
Tetris®) to a complex “RPG” character.
You will find in the packages engine.actor and areagame.actor a certain number of classes
(and interfaces) allowing the notion of actors to be modeled in a generic way (see this class
schema[Link]). The concept of “actor” is modeled by the entity engine.actor.Actor (this
is an interface, but think of it as an abstract class for now). For this very abstract model, an
actor is simply an entity that evolves over time (update method) and that can emit sounds.
The Entity class is a particular and basic implementation of Actor : it represents an entity
with a position, a speed and a reference frame of its own (accessible using getTransform).
A little additional explanation on the notion of transform and frame of reference is given in
the appendix 7.1. In principle, there is no need to understand this concept in depth to start
the project.
The first actor you will use is very rudimentary. It will be coded as a subclass of Entity.

4.7 Exercise 1 : first “game with areas”
Now is the time to start trying to use the few elements of the toolkit presented so far for
yourself. You will code a draft game with areas.

IDEs like Eclipse or IntelliJ are very practical to automatically add missing import
directives in a class. This usage is recommended, but be careful, when there are several
choices, to include the option that corresponds to your needs and not to include
non-standard elements (you should only keep imports starting with java. or javax.).
The toolkit provided uses the Color class in particular. The java.awt.Color version
should be used and not other implementations from various alternative packages.

11

https://proginsc.epfl.ch/wwwhiver/mini-projet2/actor-game.html
https://proginsc.epfl.ch/wwwhiver/mini-projet2/actor-game.html

4.7.1 First concrete actor

Create a subpackage actor from the provided package ch.epfl.cs107.play.tuto1 in
which you will code a new actor class called SimpleGhost. These actors derive from the
class Entity4. This will be an actor with a graphical representation, that is to say an
attribute of type Sprite (type provided in the engine.actor package).

Game Boy type games often simulate an aerial view known as a top view. To respect
the desired effect which dictates that being below implies being in front, the images
must be drawn from top to bottom so as not to create contradiction. The Sprite are
simple graphic images whose depth depends on the y coordinate of the entity to which
they relate. The Sprite also allow you to specify in their constructor which objects they
attach to (see the code for this class if necessary).

A SimpleGhost will also be characterized by an energy level (encoded as a float). You will
equip it with the methods :

• boolean isWeak() returning the boolean true if the ghost’s energy level is less than
or equal to zero ;

• void strengthen() returning the energy level to a given positive value (always the
same (choose 10 for example) ;

Its constructor will have the following heading :
public SimpleGhost(Vector position , String spriteName)

spriteName is the name of the image associated with the ghost during its construction
(this image will be searched in the folder src/main/resources by the code of Sprite). The
Sprite associated with SimpleGhost can be created using the twist :

new Sprite(spriteName , 1f, 1f, this);

in the SimpleGhost constructor. The parameter this allows the constructor of the Sprite
to attach it to the current object.
The constructor for SimpleGhost will initialize the energy level with a default value (choose
a value not too high like 10 . . . you will see why a little later).
We also want to display the energy level next to the ghost.
To do this you will need to declare an attribute :

private TextGraphics hpText;

which will be initialized in the constructor using the turn :
new TextGraphics(Integer.toString((int)hp), 0.4f,

Color.BLUE);

where hp represents the “energy level” attribute.
To ensure that this text is linked to the ghost, and therefore moves with it, it must be
attached to it :

4we name it SimpleGhost because it is derived from Entity which is a very low-level class of “actors”,
it is in fact simply an object that can be positioned in space

12

hpText.setParent(this);

The anchor point of the text can be shifted by this kind of turn :
this.hpText.setAnchor(new Vector(-0.3f, 0.1f));

These two instructions must be placed, once and for all, in the constructor.
Our actor SimpleGhost inherits from a method void draw(Canvas canvas) inherited from
Entity. The latter allows us to display on a support such as Canvas5, the image associated
with our object. Note that Sprite and TextGraphics have void draw(Canvas canvas)
methods.
Redefine the draw inherited from Entity so that the energy level text is also displayed.
Also redefine the void update(float deltaTime) method. Its role will be to decrement
by deltaTime the ghost’s energy level ; the ghost cannot, however, have an energy level
lower than zero. You will need to remember to update the hpText text accordingly.

4.7.2 First concrete play areas

In the ch.epfl.cs107.tuto1.area package, you will find a subclass SimpleArea by Area.
This class imposes on its concrete subclasses the definition of a method createArea allowing
you to create the content of a specific play area. The getWidth and getHeight will be
explained to you in the following tutorial. They are not useful at this stage. You can redefine
getCameraScaleFactor in class SimpleArea. Make it return the value 10.f for example.
This allows you to define a default scale factor to use for all areas of type SimpleArea.
Create a subpackage ch.epfl.cs107.tuto1.area.maps and create the specific areas Village
and Ferme inheriting from SimpleArea.
You will give concrete definitions to the createArea method in each of these classes. This
method should :

• do nothing at the moment in Ferme ;
• create actor SimpleGhost in Village and register it there (remember the registerActor

method and any idea of why we don’t use addActor here instead ? You will use a
Vector(20,10) as position and the image named "ghost.2".

Any specific “game” must specify the name that characterizes it. To do this, you will add
to the class Village, the redefinition :

@Override
public String getTitle() {

return "zelda/Village";
}

and you will proceed in a similar way for Ferme :
@Override
public String getTitle() {

return "zelda/Ferme";
}

Finally, you will note that ”default, default” constructors are sufficient for these two classes.
5Window derived from Canvas

13

4.7.3 First game with concrete areas

At this stage we have two areas, one of which is intended to contain a concrete actor. We
now have to define a game made up of these two areas. Recall that AreaGame allows you
to model a game with several areas. So define in the ch.epfl.cs107.play.tuto1 package,
the class Tuto1 inheriting from AreaGame. Provide it with a private method createAreas()
that adds the desired areas to the game. This method simply calls the addArea method
from AreaGame, for example like this to add the area Ferme :
addArea(new Ferme());

Like any playable element, Tuto1 must define the methods begin, end , update and getTitle.
You will code them as follows :

• the method end does nothing in particular ;
• the method update just invokes that of the super-class ;
• the method getTitle returns a title associated with the game, like "Tuto1" ;
• the method begin be coded according to the following model :

if (super.begin(window , fileSystem)) {
// treatment specific to Tuto1
return true;

}
else return false;

Treatments specific to Tuto1 will consist of :
– create areas (using createAreas) ;
– and indicate that the current area is the area titled "zelda/Ferme" (we want

that when passing to this area, it is restarted, the parameter forceBegin will
therefore be worth true)

Question 1

What happens if we forget to invoke the update of the superclass in the update by
Tuto1 ?

All that remains is to indicate in the main program Play, that you wish to launch the
playable element Tuto1.
To do this, simply comment the line :

// final Game game = null; // new Tuto1();

and add the following line after it :
final AreaGame game = new Tuto1();

Remember that the main program calls the update method in a loop of the
simulated game (here Tuto1), which calls the update of its current area, which in
turn calls the update of each of its actors. This is how the simulation can evolve
over time.
Ready for the big leap ? run your Play program.
If everything goes well . . . a completely empty window is displayed. But where has our ghost
gone ?

14

Answer : it is in the area that is not displayed. Indeed, we indicated that our current
area (the only one simulated) was ”zelda/Ferme" and our ghost is in the area named
"zelda/Village". You can check this by changing the current area in Tuto1. You should
then see the ghost’s energy level decreasing over time and stabilizing at zero.

4.7.4 Main character

Our aim is to code games in which a main character can be controlled via the keyboard so
that he can walk around different areas.
This actor will have a particular status and we will consider that he is one of the characteristic
elements of the game. Add therefore to your game Tuto1, an attribute :

private SimpleGhost player;

who will fulfill this role. In the method begin of Tuto1, start by giving a value to the
main character by creating a SimpleGhost positioned in (18, 7) and with the image name
"ghost.1". Then register the main character in the current area (once it has been designa-
ted) and indicate that the camera should now follow him (remember that setCurrentArea
returns the current area and that the setViewCandidate allows you to focus the camera on
a particular actor). If "zelda/Ferme" is the game’s starting area (the one chosen in begin),
you should get this when launching the game :

Note : The wallpaper color can be changed in the file SwingWindow from the window.swing
package, line 182.

4.7.5 Controls

At the moment we can’t do much with the main character. It’s time to put that right !
To do this, program in your class SimpleGhost methods moveUp, moveDown, moveLeft and
moveRight allowing it to move a small fixed distance (for example 0.05), in a given direction.
This is how moveUp can be encoded for example :

15

setCurrentPosition(getPosition().add(0f, delta));

we use the methods setCurrentPosition and getPosition specific to Entity and which
inherits SimpleGhost as well as the add specific to the provided utility class, Vector. You
will proceed in the same way for the other methods.
Then modify the update of your game Tuto1, so that it is receptive to keyboard events. If
the user presses “up-arrow” on the keyboard, the moveUp method of the main charactermust
be called. If he presses “down arrow” it’s moveDown, if he presses “left arrow” it’s moveLeft
and on “right-arrow” it’s moveRight.
Here is how the API provided allows you to test that the up-arrow has been pressed :

Keyboard keyboard = getWindow().getKeyboard() ;
Button key = keyboard.get(Keyboard.UP) ;
if(key.isDown())

{
//...

}

(and we proceed in a similar way with the values Keyboard.DOWN, Keyboard.LEFT and
Keyboard.RIGHT).
If you launch the game again, however, you will have the impression that these keys have
no effect. This is normal, because the camera refocuses on the main character each time he
moves and as the background is solid, you don’t have the impression of seeing him move.
To make the movement perceptible, we would need, for example, a wallpaper with a setting
and we would then see the character move, with reference to this setting. Another way to
do it is to place it in an area where there is an element that does not move. This is the case
for our "zelda/Village"area where the second ghost is not controllable via the keyboard
and does not move.
To finalize the exercise, program in Tuto1, a method void switchArea() which allows the
main character to move from one area to another : if he is in the area "zelda/Ferme"
he should move on to the one titled "zelda/Village" and vice versa. Each time he
leaves an area he must be deregistered there. When he enters an area, the latter must
become the current area, the character must be recorded there and the camera centered
on him. When passing through another area, the main character will see his energy level
increased (strengthen() method). The transition from one area to another must be done
automatically as soon as the ghost becomes weak (isWeak method).
If you did things correctly, you should see the main character (orange ghost) appear by
himself when you launch the game, then his energy level gradually decreases until it reaches
zero. At this time, he must transit towards the area where there is the blue ghost. In this
area, the arrows can make it move visibly (you will have the impression that it is the blue
ghost that is moving because the frame of reference is always centered on the orange ghost).

Note : in your coding of the switchArea method, you probably called setCurrentArea.
Experiment with calling it with false or true as a second argument (you should see an
impact on the blue ghost’s energy level). With false we find the area in the state where
we left it and in the second we recreate it from scratch. Finally, you can play with the scale
factor to see how it affects the game’s display.

16

This little exercise ends this first tutorial. It showed you how to use the toolkit for modeling
a game made up of several areas as well as for modeling simple actors. The objective of the
second tutorial is to start using the grids associated with areas.

17

5 Tutorial II
This second tutorial looks at the use of interfaces in the provided toolkit. It also presents
in more detail the notion of a grid associated with a playing area and the specific actors
who can take place there. As with the first tutorial, small exercises will allow you to use the
concepts presented for yourself.

5.1 Let’s talk a little about interfaces
Now that the notion of interface has been introduced in class, you can start to take a closer
look at their use in the provided toolkit. The Game class (in the package engine) models the
abstract notion of “game”. It is implemented using the Playable, Updatable and Drawable
interfaces which we invite you to examine (they are in the engine package).

Question 2

Why do you think it is better to declare the variable game of the Play program, as a
Game rather than as a AreaGame ?

Response element : Game represents the concept of “game” from the functional and
abstract point of view. AreaGame is just one possible implementation of this concept. If we
declare game like a AreaGame (grid game), the main program, Play, sees much more of this
object than its abstract functional representation as a “game”. It sees all its implementation
details as a grid game. This program can then use these details at will (and misuse) in its
own implementation. This potentially induces unfortunate encapsulation flaws. For example,
what if Play decides to run a game that is not an area game and used AreaGame specific
methods in its main ?

You will therefore note that interfaces are a powerful encapsulation tool : the area, the
grid and the actors need to know each other, which implies on their part to open access to
certain information. Typically, a play area must have access to the actors and the actors
must know in which game they are playing (potential encapsulation flaws). However, if
as a user, we subscribe to the discipline of only seeing a game as the abstraction dictated
by Game, then the sensitive accesses are no longer exposed.

In the same spirit, the Actor allows you to model in a minimalist and abstract way the
functional aspects of an actor in a game, without necessarily having to expose the API of
its possible implementations. To do this, examine the contents of Actor in engine.actor.
Actor models a very simple abstract actor. The Entity class of the same package is a
possible implementation from which all kinds of other specific implementations will derive.
To protect the codes from possible modifications in specific implementations, it is necessary
to avoid exposing the latter. Manipulating any actor under the label of Actor rather than
as a specific implementation allows us to achieve this goal.
To complete your knowledge of the toolkit, you can now take a closer look at the implements
links of the classes already presented, such as Area or AreaGame for example.

18

Fig. 3 : Example of a behavioral image with color-type correspondence

Let’s now continue our exploration of the provided abstractions. The areas in our first game
are a little dark. To remedy this, we’re going to unveil the notion of grid attached to an
area (AreaBehavior), as well as the Background class. The latter will attach to the grids in
question a slightly less sidereal look.

5.2 Grid and cells
We saw in the previous tutorial that the Area class has an attribute of type AreaBehavior
This attribute models a grid that will condition the behavior of everything that takes
its place. Open the code for the AreaBehavior class. You’ll see that its attribute is an
array of cells (Cell), as well as an image (the behaviorMap attribute). The constructor of
AreaBehavior (and its concrete sub-classes) is prompted to initialize the array of cells from
a color image like the one shown in figure figure 3, where each pixel represents a cell and
each color a different cell type. We’ll explain a little later how this correspondence is set up
and how it should be used.
The Cell class represents a generic cell and each extension of AreaBehavior that will be
specific to a given game will have to redefine specific extensions of the Cell class.

Note : For the moment, the grid and the cells are two autonomous entities. This is not
the best possible design, and we’ll come back to it in the final part of this tutorial.
A Cell has a content (the set of game entities occupying the cell), but for the moment we’re
not interested in it. Suffice it to say that it is characterized by its coordinates on the grid
(of type DiscreteCoordinates).

19

background image corresponding ”behavior”

In the AreaBehavior constructor, the line :
window.getImage(ResourcePath.getBehaviors(fileName), null ,

false);

simply allows you to read an image from a given file name.
Each concrete play area is of course attached to a concrete subclass of AreaBehavior.
This association will not necessarily be unique since it’s conceivable that an area can
change its associated grid as it evolves over time. The toolkit therefore allows the mo-
dification of the AreaBehavior atached to an Area. This explains the presence of the
setBehavior(AreaBehavior ab) method in the Area class.

5.3 Actor for ”wallpaper”
Each play area is assigned a ”background” that defines its visual appearance. It’s conceivable
that such a visual may change over time (for example, different visuals for a night/day cycle).
Instead of coding the background of an area as a fixed attribute of the class Area class,
you’ll have to code it as . . . an actor. This actor is similar in spirit to the one you coded in
Tuto1 : it’s simply a subclass of Entity just like SimpleGhost. The code is provided in the
Background class of the engine.actor package. Start by taking a look at it. You’ll notice
that, by default, the image that characterizes this graphic actor is the one whose file name
corresponds to the name of its area as returned by the getTitle() method. For example, this
would be Village.png from the folder resources/images/background/zelda if getTitle()
returns "zelda/Village".
To be able to adjust its size to that of the area on which it is applied as a background,
the actor Background needs to know the dimensions of this area. This is the purpose of the
getWidth() and getHeight() methods of the Area class. The width of the area is that of its
associated grid (AreaBehavior), i.e. the number of rows in the associated cell array. Similar
reasoning applies to the height. As you’d expect, there’s a link between the appearance of
the background and the image that describes the behavior of the grid, as shown in figure
5.3.
The resources directory provides some backgrounds in the src/main/resources/images/background
directories and associated ”behavior” images in src/main/resources/images/behavior
(the correspondence is established through the name). Appendix 7.2 also provides a tool

20

for creating associated images background and behavior 6.

5.3.1 Exercise 1 (continued : adding a wallpaper)

SimpleArea is a kind of playground that doesn’t really exploit the associated grid, but
only allows you to take its size into account. This will enable you to introduce your first
”background” actors.
Complete the specific areas Village and Ferme of the tutos.area.tuto1 package to ensure
that their createArea method adds the associated ”wallpaper” actor. This is typically done
using the instruction :

registerActor(new Background(this))

If you launch the game Tuto1 again using Play, you should see the following wallpapers
displayed (only partially, due to the scale factor) (see figure 4).

”village” wallpaper ”farm” wallpaper

The use of arrows now gives the impression of seeing our red ghost move (as the view focuses
on him, the background is not always displayed in the same place). Note that you can also
register an actor Foreground on the same principle (test the effect of such an addition to
understand what might motivate it).
It’s a good start, but there’s still work to be done ! We’d like to stop our ghost getting
lost in the void when he leaves an area. We’d also like the area’s graphic visual to have an
impact : for example, for the area to change when the ghost transits a region whose visual
is that of a door/passageway, or for preventing the ghost from walking on walls or on water
bodies. You will now learn how to do this in a new exercise.

5.4 Exercise 2 : first grid game
The aim of this exercise is to create a variant Tuto2 of Tuto1 where concrete grids are
attached to the areas. It’s a rough RPG where our ghost moves around on a grid that
dictates where he can and can’t go. You’ll be working in the ch.epfl.cs107.play.tuto2
package.
As a warm-up, create the game Tuto2 whose content will for the moment be virtually
identical to that of Tuto1 (but don’t forget to adapt the getTitle method, which should
return "Tuto2").

6but you’re not required to use it

21

5.4.1 Specific grids

The AreaBehavior class is a very general and abstract way of modeling the grid attached to
a play area. Now we need to code a specialized version, allowing specific cell management.
To do this, you’ll be asked to code a subclass in the ch.epfl.cs107.play.tuto2.area
package, Tuto2Behavior inheriting from AreaBehavior
This subclass will give a particular interpretation to grid cells according to the color asso-
ciated with them in the corresponding behaviorMap
To do this, define the enumerated type in Tuto2Behavior :

public enum Tuto2CellType {
NULL(0, false),
WALL(-16777216, false), // #000000 RGB code of black
IMPASSABLE(-8750470, false), // #7A7A7A , RGB color of gray
INTERACT(-256, true), // #FFFF00 , RGB color of yellow
DOOR(-195580, true), // #FD0404 , RGB color of red
WALKABLE(-1, true),; // #FFFFFF , RGB color of white

final int type;
final boolean isWalkable;

Tuto2CellType(int type , boolean isWalkable){
this.type = type;
this.isWalkable = isWalkable;

}
}

Add to this enumerated type the method static Tuto2CellType toType(int type) re-
turning the value of the enumerated type corresponding to the integer type. For example,
toType(-195580) will return the value DOOR. The value NULL will be returned if type doesn’t
match any expected value for the enumerated type.
The type Tuto2CellType will allow us to interpret the color red 7 as a door, black as
a wall, gray as an impassable zone (like water, for example) and so on. If you open the
src/main/resources/behavior/zelda/Village.png file, the ”behavior” image associated
with the "zelda/Village" area, you’ll see how this enumerated type can be used to codify
the role of each grid cell :
The idea is that if we associate a Tuto2Behavior with an imageBehavior like the one on
the right of figure 4, then the cells corresponding to the black pixels can be seen as walls that
must not be stepped on, and the cells corresponding to the red pixels as points of passage
that can be used to move from one area to another, and so on.
It is therefore necessary to define the cells of Tuto2behavior in a specific way so as to enable
them to dictate specific constraints (depending on their nature). To do this, at the same
level as Tuto2Behavior define the subclass Tuto2Cell inheriting from Cell. A Tuto2Cell
will be characterized by its type (of type Tuto2CellType).
You’ll add the following constructor to Tuto2Cell :

Tuto2Cell(int x, int y, Tuto2CellType type)
7https ://stackoverflow.com/questions/25761438/understanding-bufferedimage-getrgb-output-values

22

background image corresponding ”behavior”

Fig. 4 : ”Village” area and corresponding ”behavior”

(Note : this constructor can be made private when using nested classes).
You will also equip Tuto2Behavior with a constructor that allows you to initialize the grid
by filling it with Tuto2Cell objects. To find the type to associate with the Tuto2Cell at
coordinates [x][y] during its construction, you can use the following formula :

Tuto2CellType cellType =
Tuto2CellType.toType(getRGB(height -1-y, x));

Indication : The values of an enumerated type are returned by the method values()
(here Tuto2CellType.values()) and it is of course possible to iterate on them with an
iteration (for (Type val : setOfType)).
Tuto2Cell inherits from Cell but must be concretely instantiable. You’ll consider that it
is always possible to leave a Tuto2Cell. For now, code the fact that it’s always possible
to enter a Tuto2Cell (we’ll come back to this later, so that the conditions depend on the
nature of the cell).
As Cell implements the Interactable interface, the compiler will require you to define
the methods isCellInteractable() and isViewInteractable() you can make them re-
turn true and false respectively (but this isn’t really important at this stage and we’ll
come back to it). For the void acceptInteraction(AreaInteractionVisitor v, bool
isCellInteraction) method, also required by the Interactable interface, simply leave
an empty body for now.

5.4.2 Specific play areas

In the ch.epfl.cs107.play.tuto2.area package, create a Tuto2Area class representing
our first play areas associated with specific grids. This class will be similar to the supplied
SimpleArea with the following differences :

• it doesn’t need to redefine the getWidth and getHeight methods, as those inherited
from Area suit it well (its width and height are those of the associated grid) ;

• its begin method must associate it with a Tuto2Behavior type grid :
setBehavior(new Tuto2Behavior(window , getTitle()));

Finally, create the specific areas Village and Ferme in a ch.epfl.cs107.play.tuto2.area.maps
package, almost identical to their versions in ch.epfl.cs107.play.tuto1.area.maps but

23

this time inheriting Tuto2Area. These are two specific areas to which we can associate a
specific grid of type Tuto2Behavior.

5.4.3 Tuto2

Complete your Tuto2 game so that its areas will be Village and Ferme, as defined in
ch.epfl.cs107.play.tuto2.area.maps (not ch.epfl.cs107.play.tuto1.area.maps !).
By default, the current area is Ferme from ch.epfl.cs107.play.tuto2.area.maps. Start
the game Tuto2. If all goes well, you should see the Ferme area (partially) displayed :

Comment out the creation and registration of the actor in the begin method, and make
sure that the update method contains only the call to the update method of the superclass
(we’ll have to change the type of actor and the way it evolves in the rest of this exercise).
The little ghost we used as an actor in Tuto1 game is actually just an image with a position.
To enable it to take account of the presence of the grid in order to move correctly, we need
to make it a little more sophisticated. To do this, we need to make use of more advanced
types of actors offered by the toolkit, which are presented here.

5.5 Grid game players
We already have a very generic way of modeling actors in a game, using the Actor interface
and the abstract Entity class. We’ll now see how this modeling is extended in the toolkit to
incorporate actors evolving on a grid. The classes described below are in the areagame.actor
package.

5.5.1 La classe AreaEntity

The abstract class AreaEntity is used to model players belonging to a gridded play area.
Their main specificity is that they occupy cells of this grid. In general, they can occupy
several cells, but only one will be used to locate them, which we’ll call the main cell. Actors
in a gridded play area also have an orientation, which will allow them to be drawn differently
depending on where they’re moving towards. Finally, we start from the fairly natural design
assumption that such an actor can ”see” his neighborhood and therefore has knowledge of
the area to which he belongs.

24

Fig. 5 : Hierarchy of grid-based game players

The Orientation type is provided in the math package.
You’ll note that the void setCurrentPosition(Vector v) method inherited from Entity
has been redefined to adapt to the fact that we’re now working on a grid (so that we can also
update our main cell). We haven’t coded the actor Background as an AreaEntity because
it’s an actor that’s not supposed to ”inhabit” grid cells. This shows that a grid game can
perfectly well involve other types of actor than those specifically dedicated to occupying
cells.
Finally, some useful ” getters-setters ” are also provided. You’ll notice the protected accesses
chosen for some sensitive methods to mitigate potential encapsulation leaks.
An important method of AreaEntity is setOwnerArea which lets you tell an actor what
area it belongs to.

5.5.2 Interfaces Interactor and Interactable

The purpose of the grid is to manage the content of its cells and what happens within them,
such as authorizing or prohibiting the passage of an actor from one cell to another, and
managing interactions between actors occupying identical or neighboring cells. This is the
role of the entities attribute of the Cell class (coded using the predefined Set type, see
Appendix 2 7.1 on sets). This set is not modeled as an Actor set, and we’ll see why.
In fact, actors only interest the grid as entities receptive to interactions. Indeed, it’s easy
to imagine that certain actors (e.g. a wallpaper) are impervious to any interaction and
therefore don’t need to be taken into account by the grid. What’s more, an entity receptive

25

to interaction is not necessarily an actor. It may simply be a cell. The Set<Actor> type is
therefore not entirely suited to modeling the contents of a cell, and encoding this set calls
for new abstractions. In concrete terms, these are entities capable of interacting.
The toolkit offers the following interfaces, placed in the ch.epfl.cs107.play.areagame.actor
package :

• Interactable : this interface can be used to model any entity receptive to an inter-
action request ;

• Interactor : this interface models any entity that can interact with an Interactable.
As their name suggests, these two interfaces are intended to work in symbiosis, with the
Interactor designed to impose an interaction on an Interactable.
We assume that any grid entity (AreaEntity) must define itself as an object subject to
interaction. For this reason, AreaEntity implements the Interactable interface !
The entities attribute of a Cell is therefore not a set of Actor but a set of Interactable.
In particular, it contains a protected method enter for adding a given Interactable to
this set, and a protected method leave for removing a given Interactable from this set.
We will also differentiate between two types of interactions :

• contact interactions : take place between a Interactor and the Interactable located
in the same cells.

• distant interactions : take place this time between a Interactor and the Interactable
located in the cells of its field of vision.

To illustrate this difference, let’s take an example. Let’s imagine a situation with three
actors : two characters and a plate of ice. The two characters can interact in a distant way,
for example to chat ; they don’t need to be in the same cell to talk to each other. On the
other hand, the characters can only interact with the plate of ice by contact : when they
enter the cell containing the plate of ice, they can slide.
For the time being, we won’t be examining the content of the Interactor interface (which
is only needed to support interactions between actors, and which we’ll do in the next step).
Examine the code of the Interactable interface used to model an entity receptive to
interactions.

26

The proposed design models the fact that an Interactable :
• occupies a list of cells : method List<DiscreteCoordinates> getCurrentCells() ;

• when occupying a cell, can make it non-traversable by others (it can prevent other
Interactable from investing the cell it occupies) : method boolean takeCellSpace().
An Interactable for which boolean takeCellSpace() returns true will be called
”non-traversable” in the rest of the statement (of course, whether it’s traversable or
not may depend on various conditions and need not always be true or false) ;

• indicates whether it accepts distant interactions : method boolean isViewInteractable() ;

• and indicates if it accepts contact interactions : method boolean isCellInteractable().
It is also considered that at the abstraction level of an AreaEntity, it is not possible to
concretely define the methods dictated by the Interactable interface.
Finally, note that Cell also implements Interactable to indicate that cells are also recep-
tive to interactions. At the Cell abstraction level, only the getCurrentCells method can
be redefined. It returns a list whose single element is the cell’s coordinates.
We’ll come back to the other methods of the Interactable interface later.

5.5.3 The class MovableAreaEntity

Some of our grid actors will naturally be in motion. Unlike our SimpleGhost actor, they’ll
have to move in accordance with the constraints imposed by the grid.
The abstract class MovableAreaEntity in the package areagame.actor is derived from
AreaEntity and can be used to model this type of actor. Its main feature is the presence of
a move method enabling the actor to move continuously.
The parameter framesForMove is the number of frames (steps) chosen to implement conti-
nuity of movement. In concrete game implementations, we’ll introduce the possibility of
matching each step (frame) with a different graphical representation, thus animating the
move.
In order to take place, the move must be authorized by the Area and by each of the cells
that the entity will leave or enter during the move.
By definition, the move will always take place from the current main cell to a cell adjacent
to it, defined by the entity’s current orientation. The mobile actor moves one cell at a time,
and to ensure that it never finds itself between two cells, a move will always wait until the
end of the previous one before starting.
The role of the protected boolean move(int framesForMove, int frame) method is to
decide whether a move can take place and, if so, to initiate it. It returns true to indicate
that a move is in progress.

5.6 The area and its grid dictate their conditions
Now it’s time to look at how the grid and the area impose their conditions on the placement
and movement of the entities. Remember that each area is equipped with a grid. To do
this properly, the addition or removal of an actor from the area must take into account
the potential veto of the grid. For example, the grid should normally be able to oppose the
addition of an actor to a given cell. For example, an actor whose number of cells is too large to

27

be placed in a desired position (grid overflow) should be refused by the grid and therefore not
be added as a new actor in the area. Similarly, the move method of the MovableAreaEntity
must allow the area or grid to express constraints on movement. Typically, it should at least
prevent an entity from leaving the grid. To dictate these conditions, we start from the idea
that the cell can dictate its conditions, which will impact the decisions of the grid to which
it belongs, and which in turn may impact the decisions of the area associated with the grid.

5.6.1 Conditions dictated by cells and grid

In order to allow a cell to express control over placement/movement, the Cell class contains
the protected abstract methods :

• boolean canEnter(Interactable entity) : returning true if entity has the right
to add itself to the cell contents and false otherwise ;

• boolean canLeave(Interactable entity) returning true if entity has the right
to subtract from the cell content and false otherwise.

These methods, together with the grid’s knowledge of its dimensions, will enable it to
condition the movements and positioning of the Interactable that may occupy its cells.

5.7 Exercise 2 (continued : adding a character)
You now have (almost) all the basic logistics for coding grid-based games, including actors
(Phew !). To see this in action, you’ll now complete the coding of the game Tuto2.
So that the grid Tuto2Behavior can dictate its conditions to the actors in it, the cells of
Tuto2Cell will be characterized by the fact that they :

• only allow entering a cell if its attribute isWalkable is true (set canEnter() accor-
dingly) ;

• accept contact interactions (define isCellInteractable() accordingly) ;

• do not accept remote interactions (define isViewInteractable() properly) ;

• can always be left (define canLeave() properly).

5.7.1 Specific actors

We now need to create a grid game actor, GhostPlayer in ch.epfl.cs107.play.tuto2.actor.
This type of actor will inherit from MovableAreaEntity. It will accept any type of interac-
tion and will not be traversable.It will also have the same behavior as the actor SimpleGhost
(hit points, isWeak method, and transition from one area to another when the number of
hit points becomes zero)8. It will also be equipped with methods allowing it to :

• enter a given area by placing itself in a given position :
void enterArea(Area area , DiscreteCoordinates

position)

The algorithm consists of :
8take directly from what you’ve done on this subject in the SimpleGhost class

28

1. register as an actor (taking the necessary steps to indicate the area to which it
belongs) ;

2. update its absolute position : setCurrentPosition(position.toVector()) ;
3. and set itself to immobility (resetMotion).

• and leave the area to which it belongs (unregister).
The GhostPlayer constructor will have the following header :

public GhostPlayer(Area owner , Orientation orientation ,
DiscreteCoordinates coordinates , String sprite)

coordinates is the cell occupied by the ghost when it was created. In order to be ins-
tantiated, a GhostPlayer must contain concrete definitions of the methods imposed by
Interactable and MovingAreaEntity.

@Override
public List <DiscreteCoordinates > getCurrentCells() {

return
Collections.singletonList(getCurrentMainCellCoordinates());

}

For simplicity’s sake, we are assuming here that the actor occupies only his main cell.
The update method of GhostPlayer implements the following algorithm :

1. start moving or orienting according to the keys pressed by the user ;

2. call the method update of the super-class (to actually perform the initiated move, if
necessary).

For step 1 of the above algorithm, the algorithm is as follows :
• if the button corresponding to the Keyboard.LEFT is pressed (isPressed) then if

the actor is oriented to the left, we initiate the movement to the left (call to move).
Handle this interaction directly in the update method of the actor (this is now possible
because an AreaEntity knows the area to which it belongs and therefore has access
to its getKeyboard() method).

• otherwise, we orient the actor to the left.
The number of ”frames” used by move could be defined as a static constant :

/// Animation duration in frame number
private final static int ANIMATION_DURATION = 8;

We will proceed in a similar manner for all other orientations.
GhostPlayer will obviously have to have a specific drawing method, which will simply draw
the Sprite partner.
Finally, like Interactable, GhostPlayer must also provide an empty implementation of
acceptInteraction for the moment (like Tuto2Cell).

You will note that only the players in the grid games have access to the area to which
they belong.

29

doors in ”zelda/Village” doors in ”zelda/Ferme”

Fig. 6 : Description of doors

5.7.2 Character Placement

Complete Tuto2 so that this game is characterized by a GhostPlayer type character. The
character will be created when the game starts, with orientation Orientation.DOWN. It will
be recorded in the current area and the camera will be centered on it. Its update method
will simply implement the fact that if the character is too weak, he will transit to the next
area. This will do exactly the same as what was done in Tuto1 (if it was in Village it goes
into Ferme and vice versa).

update no longer needs to manage keyboard interactions, which are managed
directly in the update of the character.

You will use (2,10) as starting coordinates in Ferme and (5,15) in Village and these are
the same coordinates which will be used as starting coordinates each time the actor switches
back to these areas. You can use 13.f as a scaling factor, and it makes sense that this value
is a final static constant specific to the game, i.e. Tuto2.

5.7.3 Validation of the coded solution

You will verify that the GhostPlayer :
1. can move across the entire surface of the playing areas without leaving the grid ;

2. cannot walk on obstacle areas (all areas corresponding to black or gray in the associated
behavior image, typically water or barriers cannot be crossed)

3. is well tracked by the camera when moving ;

4. can correctly transit from the area Village to the area Ferme and vice versa. For the
moment he will only do it based on his life points.

It would be natural for the character to transit from one area to another rather by passing
through areas corresponding to doors (see the figure 6). To do this, and to complete the tools
necessary for creating games, it is necessary to be able to properly model the interactions
that can take place between actors. This is the theme of the last tutorial.

30

6 Tutorial III
This third and final tutorial presents the design pattern to be used to code interactions
between actors. Beforehand, you can revisit your design by making good use of nested classes.
Some utility classes, which will be useful for you to tackle the mini-project, are also presented
at the end of the tutorial.
There will be no exercise per se, the concepts presented will be directly exercised in the first
part of the project.

6.1 A little ”refactoring” using nested classes (optional)
Now that nested classes have been presented in class, you can, if you wish, improve the
design by ensuring that the concept of cell is inseparable from that of grid. The Cell
class would therefore become a public class nested in the AreaBehavior class. It would
then also be necessary to ensure that Tuto1Cell and Tuto2Cell become nested subclasses
of Tuto1Behavior and Tuto2Behavior. This will improve the encapsulation of the class
Cell : its methods cellInteractionOf and viewInteractionOf can thus become private
because they are in principle not useful outside the grids. The constructor can become
protected.
The cell models themselves remain public classes because to manage the interactions that
the actors can have with the cells they must be able to access them.

6.2 Tutorial solution

To access the tutorial solution, all you need to do is install a new
IntelliJ project using the archive : tuto-solution-2024.zip
To install the project on IntelliJ :

1. unzip this archive into a directory of your choice ;

2. open the directory TUTO-SOL-2024 ;

3. delete the archive solution.zip.
For Eclipse, once the archive is unzipped, create the project using the
"From existing sources" option and indicating the host directory
as the root of the project. The tutorial solution can be found in
the game.tutosSolution package. The new version of AreaBehavior
nests the Cell class. The solution provided in tutosSolution is based
on this concept,

To start the project, you will draw inspiration from the correction in tutorial 2. Read it

6.3 Interactions between actors
In our previous game, it would have been natural to allow our main character to transit
from one area to another via places with a “passage” visual (red pixels). A simple way to
do this would have been to use the color of the pixels of the image associated with the grid

31

https://proginsc.epfl.ch/wwwhiver/mini-projet2/tuto/tuto-solution-2024.zip

to give specific behavior to the character based on this color. However, it is not very good
to do this for several reasons :

• this implies that the grid must communicate specific information to the characters
(for example provide a method boolean isDoor(int i, int j) allowing to know if
a given cell corresponds to a red pixel (not general enough : what happens if the color
red has to be interpreted differently at another level of the game ?) ;

• it is not certain that we necessarily want to exploit all the cells corresponding to a red
pixel as doors in our games ;

• a place with a “passage” visual can correspond to different types of doors (we can for
example imagine having doors that open with a key, others that we can pass through
without conditions, etc.).

Therefore, it is preferable to instead create a actor Door to be placed (in general) on the red
zones (but not necessarily all). The interaction must then take place between two actors (a
“door/passage” actor and a “character” actor). We will now study the components of the
toolkit that can be used to manage interactions between actors.

6.3.1 The Interactors

So let’s say we want to create a game where a character can interact with a “door” actor and
a “tuft of grass” actor in the sense that he can go through the door and cut the tuft of grass.
The character must play a more active role by expressing whether he wants interaction or
not (for example, he is not forced to cut the grass). It will therefore be an entity which
requests an interaction. This particular category of actors, requesting interaction, can be
modeled in the toolkit using the Interactor interface. Open the Interactor interface. You
will see that the latter allows you to model an object :

• which occupies a list of cells and therefore has a method List<DiscreteCoordinates>
getCurrentCells() returning the coordinates of these cells ;

• which has a certain number of cells in its field of view and therefore has a method
List<DiscreteCoordinates> getFieldOfViewCells() returning the coordinates of
the cells in its field of view ;

• which indicates with a boolean method boolean wantsCellInteraction() if it re-
quests interaction from contact ;

• which indicates with another method boolean wantsViewInteraction() if it re-
quests remote interaction ;

• and which allows you to interact with a Interactable using the void InteractWith(Interactable,
boolean isCellInteraction) method. The second parameter allows you to specify
the desired mode of intercation : by contact (parameter value true) or remotely
false).

Let us now see how this particular type of actor intervenes in the simulation. So far we’ve
only been concerned with a few lines in the update method of a play area (Area). Look
again at the code for this method and look at its update method. There you will see that
after the actor updates loop :

32

for (Actor actor : actors) {
actor.update(deltaTime);

}

the actual interaction management takes place :
for (Interactor interactor : interactors) {

if (interactor.wantsCellInteraction()) {
// ask the associated grid (AreaBehavior)
//to set up contact interactions

}
if (interactor.wantsViewInteraction()) {

// ask the associated grid to set up
// distant interactions

}
}

The AreaBehavior grid being the manager of all the mechanisms that take place there,
it is in fact up to it to provide the methods managing the interaction strictly speaking.
This raises two new issues : how are all the interactors defined/constructed ? (the variable
interactors in the code above) and how the grid intervenes to manage the interactions ?

6.3.2 Set of Interactors

Any actor of type AreaEntity is likely to be receptive to interaction. This is why the class
AreaEntity already implements the Interactable interface. On the other hand, classes
that implement Interactor will rather be close to concrete objects (deciding whether an
object is willing to interact is rather done in a specific way). For example a game character
is a natural candidate to be an Interactor.
The actors playing the role of Interactor have a special role to fulfill. You must therefore be
able to distinguish them from the others. This is why the Area has an attribute interactors
logging all actors of type Interactor. If you take a closer look at its addActor method, you
will see that it also has the role of populating the interactors attribute (and therefore to
categorize the actors according to whether they are Interactor or not). An actor of type
Interactor is recorded in the list of actors as well as in the interactors list.

It is not uncommon in programming to reference the same object from
multiple places. This allows you to manipulate the objects in question
from different points of view : a Interactor must be able to be seen as
a Actor so that we can apply its method update or as a Interactor
so that we can make him interact with the other actors.

6.3.3 Handling interactions at the grid level

The idea is therefore that it is ultimately up to the grid to set up the interaction mechanisms.
This is why the class AreaBehavior is equipped with the methods :

• public void cellInteractionOf(Interactor interactor) : which manages all contact
interactions between interactor and the Interactable in the same positions as those

33

he occupies.

• This method loops through all cells at positions
interactor.getCurrentCells() and apply a method to them
cellInteractionOf(interactor) specific to Cell.

• public void viewInteractionOf(Interactor interactor) : which manages all re-
mote interactions between interactor and the Interactable of his field of vision.
This method loops through all cells at positions interactor.getFieldOfViewsCells()
and applies a method viewInteractionOf(interactor) specific to Cell.

These two methods allow the Interactor (as a parameter of these two methods) to listen
to the grid. They require the following methods to be present in Cell :

• private void cellInteractionOf(Interactor interactor)

• private void viewInteractionOf(Interactor interactor)
Here is how the code for the first of these methods looks like :
private void cellInteractionOf(Interactor interactor){

for(Interactable interactable : entities){
if(interactable.isCellInteractable())

interactor.interactWith(interactable , true);
}

}

where entities represents the entire Interactable listed in the cell. The second method
is coded in the same spirit.

6.4 Generic interactions
Here we are at the heart of the subject, how to concretely code the method

void interactWith(Interactable other , boolean
isCellInteraction);

for a Interactor given ?
Let’s place ourselves in a more general context than that of already coded game sketches and
suppose that we have to code a main character interacting with other actors. Let’s call it
MyPlayer. The latter will typically be a Interactor ; that is, an entity that invites interac-
tions. How could we a priori define our specific method void interactWith(Interactable
other, boolean isCellInteraction) so as to allow him to interact with actors Door
(door) and Grass (tuft of grass)?
The trivial way to do this would be to resort to type tests :
void interactWith(Interactable other, boolean isCellInteraction){

if (other instanceof Grass() && !isCellInteraction) // remote interaction
with grass...

if (other instanceof Door && isCelInteraction) //contact interaction with
the door...

}

which is very ad hoc and not very scalable. In fact, when programming a game, all Interactor
can potentially interact with all other possible players in the game and all cases must be

34

considered. A design diagram is classically used in this type of situation where there are
actions to be performed on all kinds of objects which do not necessarily have links between
them. It consists of delegating the management of these actions to an external class which
we would here call the character interaction manager9 :

/* manages MyPlayer's interactions with all actors */
class MyPlayerHandler {
public void interactWith(Door door, boolean isCellInteraction) {

// fensure that the door is passed by the actor
}
public void interactWith(Grass grass, boolean isCellInteraction){

// makes sure the grass is cut
}

}

This handler is specific to MyPlayer, in our case it would be coded as an internal private
class of this class.
The class MyPlayer would have its interaction manager as an attribute :
private final MyGamePlayerHandler handler;

and a generic method :
/* asks other to agree to have their interactions

with MyPlayer managed by handler
*/

public void interactWith(Interactable other, boolean isCellInteraction) {
other.acceptInteraction(handler, isCellInteraction);

}

9Commonly called the “visitor” design pattern

35

Each Interactable must then offer a method indicatting if it accepts the interaction
handled by handler. For example in Grass we would have :
public void acceptInteraction(MyPlayerHandler v, boolean isCellInteraction)

{
// asks the handler v to manage the interaction with Grass (this)

v.interactWith(this, isCellInteraction);
}

This solution offers the advantage of being able to code a single, very general method in
Interactor, the method interactWith(Interactable, boolean isCellInteraction).
Only one downside is left, the argument of acceptInteraction in Grass is still too specific :
we should add a method acceptInteraction with the handlers of each Interactor possible
(here we only have one Interactor, but nothing prevents us from introducing others).
The idea is therefore to instead resort to the diagram in figure 7.

Fig. 7 : Class diagram for setting up interactions

We therefore inherit MyPlayerHandler more general interaction managers. In this way, the
Interactable must offer as the only additional method :
public void acceptInteraction(AreaInteractionVisitor v, boolean

isCellInteraction) {
// with a simple default definition

}

The interface AreaInteractionVisitor models a generic interaction manager for which we
can imagine a default implementation which is provided in the areagame.handler package.
The method acceptInteraction by Grass (or Door) would then be written simply :

public void acceptInteraction(AreaInteractionVisitor v,
boolean isCellInteraction) {

((MyGameInteractionVisitor)v).interactWith(this, isCellInteraction);
}

There is a conversion to be carried out, but only one. This conversion allows interaction
management to be delegated to the game-specific manager to which Grass participates.
This indicates that the tuft of grass agrees to have its interactions managed by the specific in-
teraction manager MyGameInteractionVisitor and whose MyPlayerHandler is a concrete

36

Fig. 8 : Example of a behavioral image representing a maze (walls in black) and a graph
representing the connections between passable cells (in white)

achievement. This handler expects that any Interactor can have interactions with each ac-
tor in the game concerned. Adding a new actor involves retouching the MyGameInteractionVisitor
handler. and only the Interactor who would like an interaction with this new actor. The
other actors, however, do not undergo any modification due to the introduction of this new
actor (which was not the case with the other attempts towards the solution mentioned
above).
Figure 7 graphically summarizes the suggested design scheme for managing interactions
between actors. The second part of the project will allow you to concretely implement this
plan. In particular, you will be given precise instructions on where to place the classes
mentioned in the diagram presented and how to code them.
The components of the mockup below are useful for coding the project or extensions. Skim
over this material quickly at this time to make yourself aware of its existence and return to
it as you need for the project.

6.5 Class AreaGraph

The class AreaGraph from the package game.areagame allows you to associate a connected
graph with a game grid. This can be used to simulate the beginning of artificial intelligence
for the movement of actors (actors who move following a path).
The class AreaGraph offers in particular the method :

Queue <Orientation > shortestPath(DiscreteCoordinates from ,
DiscreteCoordinates to)

which allows you to find the shortest path between a starting point and a destination
point in the graph associated with a grid. This path is described as a “file” https://
fr.wikipedia.org/wiki/File_(structure_de_donn%C3%A9es) from Orientation. This
is the sequence of orientations to adopt to arrive at the box to starting from the box from.
Queues are implemented in Java using the Queue (https://docs.oracle.com/en/java/
javase/11/docs/api/java.base/java/util/Queue.html). Suppose an actor moves on a
grid associated with a graph graph. If this actor occupies the coordinate cell start and he
wants to go to the coordinate cell stop, orientation nextOrientation that he must adopt

37

https://fr.wikipedia.org/wiki/File_(structure_de_donn%C3%A9es)
https://fr.wikipedia.org/wiki/File_(structure_de_donn%C3%A9es)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Queue.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Queue.html

is given by :
Queue <Orientation > path = graph.shortestPath(start , stop);
Orientation nextOrientation = path.poll();

The poll method of Queue allows you to extract and delete the head of the queue.

6.6 Classes RPGSprite and Animation

You used the class Sprite in a simple way to graphically represent the main character of
the game. Other classes are available to refine the graphic representation of objects.
For example, the RPGSprite class models a Sprite with a depth. It can be used to place
the character in front or behind an object.
Furthermore, a Sprite or RPGSprite does not necessarily correspond to a unique represen-
tation.
A complex image can also be composed of several sprites. For example, the image of figure
9, is made up of 4x4 small Sprite size 16x32. It can be divided into sets allowing different
views of the characters or animations

Fig. 9 : Example of an image used as a basis for animations

For example, the top line which allows you to animate downward movements can be obtained
like this :
spritesDOWN[i] = new Sprite("zelda/player", 1, 2, this , new

RegionOfInterest(i*16, 0, 16, 32));

for i ranging from 0 to 3.
The concept of animation, offered by the class Animation from the engine.actor package in
game-engine, is characterized by a set of Sprite to be displayed in turn. Its update method
allows you to choose which element/frame of the set is the current element. This is the one
that will be displayed if we call the draw animation method. It is possible to influence the
speed at which the frame changes when calling update, using the frameDuration attributes
and speedfactor (and associated methods).

38

The main character, for example, can therefore be associated with 4 animations allowing
him to animate him when he moves up, down, left or right. Drawing the character therefore
amounts to drawing the 4 animations associated with it.
Animations can of course be associated with any actor. For example, a torch can offer an
animated visual giving the impression that its flame is moving.
Failing to animate the actors, we can at least orient them visually by choosing Sprite
specific to the orientation.
You will notice that the RPGSprite offers some useful methods for extracting Sprite of a
complex image or the creation of animations from Sprite tables, in particular, extractSprites()
and createAnimations().
So if we want to create animations corresponding to the up, down, left, right orientations of
a character, we can do something like this :

Sprite[][] sprites = RPGSprite.extractSprites("zelda/player",
4, 1, 2,

this , 16, 32, new Orientation[] {Orientation.DOWN ,
Orientation.RIGHT , Orientation.UP, Orientation.LEFT});

// creates an array of 4 animations
Animation[] animations =

Animation.createAnimations(ANIMATION_DURATION/2, sprites);

where ANIMATION_DURATION is the number of frames used for the movement (here we go
from one animation to another every two movement steps).
You will note that the toolkit provides a higher-level abstraction which simplifies the use of
animations attached to an oriented entity, namely the OrientedAnimation class.

6.7 Signals
The interface Signal is provided in the signal package. It very simply models a signal as
an entity with an intensity (a value of type float between 0.0 and 1.0). Any object, actor
or not, implementing the Signal represents a signal whose intensity value can be used, in
various ways, to make decisions. See the code for this interface as provided in the signal
package. We also invite you to take an overview of the different types of signals provided in
the same package. You will notice that the interface Logic offers in particular two constants
of type Logic (yes Java allows recursive definitions !) : the constant TRUE and the constant
FALSE. Here are some explanations about the twist :
Logic TRUE = new Logic() {

@Override
public boolean isOn() {

return true;
}

};

(in particular, do we have the right to instantiate an interface ??)
This code means that we create the instance of an anonymous class (without name),
implementing the interface Logic and where the isOn method is redefined. TRUE is therefore
an instance of this anonymous class (and not of the interface !). The constant FALSE is defined

39

analogously. So Logic.TRUE represents an always-on signal (which can be assigned to a
variable of type Logic) and Logic.FALSE represents a signal that is always disabled.
It is possible, for example, to code actors whose behavior depends on signals : for example a
“door” actor which would be opened or closed depending on whether a “key” actor has been
picked up or not. The “key” actor would be a signal (ON when picked up by the player and
OFF otherwise) and the door would have the key as an attribute conditioning its opening.

40

Fig. 10 : The view on a targeted part of the grid is obtained by an affine transformation of
the window (here a simple translation)

7 Appendices

7.1 Appendix 1 : ”Positionable” objects, transformed objects and
graphic objects

The positioning and display of simulated elements in the simulation window are obviously
fundamental points.
The first point to make here is that when positioning simulated objects, it’s not practical
to think in pixels : this makes us dependent on the size of the window, which is counter-
intuitive ; our simulated universes will probably be larger than what we want to display.
So we’re going to express all our magnitudes relating to positions, dimensions etc in terms
of the simulated grid’s magnitude scales and not in terms of pixels in the window. As
the grid can be larger than the display window, we’re going to subject the latter to affine
transformations (translation, zoom etc.) to enable us to focus on a specific part of the world
(see Figure 10).
The display window is a typical example of an element that needs to be positioned/modified
in the absolute frame by means of transformations. In fact, all elements to be positioned in
the absolute frame can be positioned in the same way (e.g. shapes or images to be drawn).
To meet this need, the API provides the following elements :

• The Positionable interface describes an object whose absolute position can be ob-
tained by means of an affine transformation (Transform class). A Entity is typically

41

a Positionable

• The Attachable interface describes a Positionable that can be attached to another
(its parent). This is done using the setParent method. It is characterized by a relative
transform, which indicates how the object will be positioned in its parent’s reference
frame (or in the absolute if it has no parent).

• The Node class, which is a simple concrete implementation of the Attachable interface.
The getTransform() method applied to a Positionable actually allows you to locate it in
its local/relative reference frame.
In addition, the API provides classes such as ch.epfl.cs107.play.engine.actor, TextGraphics,
ImageGraphics and ShapeGraphics which implement the notion of ”drawable” objects
(Graphics). A Graphics can be attached to an Entity using the setParent method. If a
graphic object is attached to an entity, its drawing will necessarily take place in that entity’s
reference frame, with no need to explicitly place it there by means of a transformation (you
have an example of this with the text attached to the rock in the first ”game” to be created,
Demo1).
However, it is sometimes necessary to specify the anchor point of the graphic object in
relation to the entity that serves as its parent (i.e. how far the image must be offset from
the origin in order to be superimposed cleanly on the entity). Take a look at the relevant
API to see how this notion of anchor point is put into practice.

42

Appendix 2 : Useful data structures
There are many different data structures. For example, in this course, you learned how to use
dynamic arrays via the ArrayList class. In reality, ArrayList is a special implementation
of the abstract data structure List.
Data structures are provided in Java in the form :

• An interface that describes the functions usually accepted for the data structure in
question ; for example, the ability to add an element at the end of a list in the case
of lists. In the case of lists, for example, the interface that describes these functions is
List

• A very general basic implementation of this interface in the form of an abstract class :
AbstractList for lists.

• Several specific implementations derived from the abstract class, e.g. ArrayList or
LinkedList for lists. Each of these specific implementations has its own particularities,
so you’ll want to use one rather than the other, depending on the context. For example,
LinkedList offers add or delete operations after a given element in constant time
(O(1)), but does not offer the possibility of accessing an element at a given position in
constant time. For ArrayList (”table list”) the opposite is true. You’ll therefore tend
to prefer LinkedList (”chained list”) if there are more add or delete operations than
those requiring direct access.

Some data structures are more appropriate than others, depending on the situation. We’ll
briefly describe two more that will prove useful in this mini-project (a more in-depth
presentation of these data structures and their characteristics will be given in the second
semester).

Associative tables

Associative tables (”map”) generalize the notion of index to non-integer types. They can be
used to associate values with keys.
For example :
import java.util.Map;
import java.util.HashMap;
import java.util.Map.Entry;

//...
// String is the key type and Double is the value type
Map<String , Double > grades = new HashMap <>();
grades.put("CS107", 6.0); // maps key "CS107" to value

(note here) 6.0
grades.put("CS119", 5.5);
// … ditto for other courses to which you'd like to

associate your grade

// Three ways of iterating over the contents of the map
for (String key : grades.keySet()) {

43

//iterate on keys
System.out.println(key+ " " +grades.get(key));

}

for (Double value : grades.values()) {
//iterate on values
System.out.println(value);

}

for (Entry <String ,Double > pair : grades.entrySet()) {
//iterate on key-value pairs
System.out.println(pair.getKey() + " " +

pair.getValue());
}

The key of a Map can therefore be seen as a generalization of the notion of index. The
Java interface that describes the basic functionality of associative tables is Map, while the
concrete implementation we’ll be using is HashMap.

Sets

It is sometimes necessary to manipulate a collection of data as a set in the mathematical
sense ; that is, where each element is unique. For example, if we want to model the set of
vowels, there’s no reason why the letter 'a' should appear twice. The method of adding an
element to a set ensures that the element is not added if it was already there :
import java.util.Set;
import java.util.HashSet;

//...
Set<Character > voyels = new HashSet <>();
voyels.add('a'); // voyels -> {'a'}
voyels.add('u'); // voyels -> {'a', 'u'}
voyels.add('a'); // voyels -> {'a', 'u'}

// display: a u
for(Character letter : characters) {

System.out.print(letter + " ");
}

The Java interface that describes the basic functionality of sets is Set, the concrete imple-
mentation we’ll be using is HashSet.

7.2 Appendix 3 : Graphic resources and level editor
More images You are free to use other images, either of your own creation or collected
from the web. In such cases, it is essential to cite the origin !

44

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
https://docs.oracle.com/javase/8/docs/api/java/util/Set.html

Level editor Play areas have a background image superimposed on an image dictating
their behavior (pixel color) :

background image corresponding ”behavior”

We’ve provided a few examples in the src/main/resources resource file, where the images/background/
folder contains background images and each of these images corresponds to a possible
”behavior” image in the behaviors/ folder.
It’s obviously interesting to be able to create new images. If you wish (this is not required as
part of the project), you can use the simple level editor proposed by Bastien Chatelain and
completed by Sami Abuzakuk (course assistants) : https ://proginsc.epfl.ch/wwwhiver/mini-
projet2/LevelEditor.zip [Link to an eclipse project archive].

45

https://proginsc.epfl.ch/wwwhiver/mini-projet2/LevelEditor.zip
https://proginsc.epfl.ch/wwwhiver/mini-projet2/LevelEditor.zip

	1 Introduction
	2 Overview of the toolkit's architecture
	3 Setting up mini-project 2
	4 Tutorial I
	4.1 !Playable!
	4.2 Simulation loop
	4.3 Grid games
	4.4 Play Areas : class !Area!
	4.4.1 Transition from one area to another
	4.4.2 Camera management

	4.5 Games with areas : class !AreaGame!
	4.6 Generic actors
	4.7 Exercise 1: first “game with areas”
	4.7.1 First concrete actor
	4.7.2 First concrete play areas
	4.7.3 First game with concrete areas
	4.7.4 Main character
	4.7.5 Controls

	5 Tutorial II
	5.1 Let's talk a little about interfaces
	5.2 Grid and cells
	5.3 Actor for "wallpaper"
	5.3.1 Exercise 1 (continued: adding a wallpaper)

	5.4 Exercise 2: first grid game
	5.4.1 Specific grids
	5.4.2 Specific play areas
	5.4.3 Tuto2

	5.5 Grid game players
	5.5.1 La classe !AreaEntity!
	5.5.2 Interfaces !Interactor! and !Interactable!
	5.5.3 The class !MovableAreaEntity!

	5.6 The area and its grid dictate their conditions
	5.6.1 Conditions dictated by cells and grid

	5.7 Exercise 2 (continued: adding a character)
	5.7.1 Specific actors
	5.7.2 Character Placement
	5.7.3 Validation of the coded solution

	6 Tutorial III
	6.1 A little "refactoring" using nested classes (optional)
	6.2 Tutorial solution
	6.3 Interactions between actors
	6.3.1 The Interactors
	6.3.2 Set of !Interactors!
	6.3.3 Handling interactions at the grid level

	6.4 Generic interactions
	6.5 Class !AreaGraph!
	6.6 Classes !RPGSprite! and !Animation!
	6.7 Signals

	7 Appendices
	7.1 Appendix 1 : "Positionable" objects, transformed objects and graphic objects
	7.2 Appendix 3 : Graphic resources and level editor

