
Entry for ‘Best Game of CS107’ 

We decided to pursue two different avenues of extension for this project. The first was focused on 
enriching the game with new features and content, while the second aimed to explore the idea of 
bringing autonomous learning agents to the game to see how well they could perform. Thus, when 
opening the game, you are shown a menu wherein you select a mode, either “ICoop” meaning you 
play the game, or “UCoop” meaning you watch the genetic simulation evolve to play the game to 
the best of its ability. The two different branches of extension are described in more detail 
separately below. 

 

Part 1: 

Log Monster: 

The first of the additions in this first part is a new Foe, 
the LogMonster. This foe is of particular interest due to 
his mechanics. He starts off in a sleeping state until 
the player enters his field of view (an approximately 
circular area). Then, he wakes up (with a waking 
animation and state), and enters his attack state, in 
which he will chase the player, and when they are 
directly in front of him at an appropriate distance, he 
fires off a GreenOrb (a new type of Projectile we 
introduced). The special behaviour of this orb leads us 

nicely into the next part of the extension – it places grass on the cell just in front of its collision spot 
with the player. 

Grass: 

Grass is essentially a decorative actor, as it is completely passable, but simply displays a cutting 
animation when the player walks through it. An important feature of the grass (as it is an actor that 
will more likely than not be placed en masse) is that the placement of grass can be done at 
initialisation automatically if the correct colour is drawn onto the behaviour map of an area (as was 
done for rocks and obstacles), to which end we added a new GRASS type to the ICoopCellType 
enum. 

Skeletons: 

Skeletons are meant to be inconvenient rather than difficult to deal with enemies. They chase the 
enemy and attempt to deal damage via collisions. Another interesting feature of skeletons is that 
they override the Foe super class to implement their own death animation. 



 

Pets: 

We also added in pets, of which there exists 
a sole type, the Wolf. These are elemental 
entities that will attempt to follow a player 
of the correct element. 

Boss Fight: 

The elements of this part of the extension 
are explored in the two provided extension 
areas, SanctumEntrance and Sanctum, 
and it is only natural that the Sanctum is 
home to a boss fight. Hence, we created a 
Dark Lord actor with some unique and 
powerful attacks and a great deal of health. 
His attacks are determined by the distance 
the player (his target) is from him. 

Depending on this distance, he will either spawn skeletons around him, spawn a ring of bombs, or 
shoot 3 flame projectiles.  If the player defeats the boss, the logical signal of the Sanctum area 
(determined by the death of the boss) is now on, and a teleporter appears, which takes the players 
back to spawn. 

 

 



Part 2: 

The evolving of a population is managed by the GeneticGame class, which contains a list of 
hundreds of instances of the UCoop game all of which are updated until they are complete (as 
determined by a function of the games, essentially, a certain amount of time elapsed since last 
meaningful action or player dead), and, of course, only one of them is drawn at a time. 

Once all simulations are complete, the GeneticGame ranks the population by fitness (as 
determined by each game, helped by functions from the players). Then, a certain number of the top 
performers are chosen as a genetic base for the next generation, where the new instances are 
drawn from a weighted probability distribution and then mutated. The top performer reserves the 
sole right to completely preserve his genes without mutation into the next generation. 

In terms of the actual implementation of each player’s genome, this is represented as a Neural 
Network, where the weights and biases are the genes of the player. The forward propagation of this 
network is then used to decide on the player’s action. With a certain (very high) probability, this will 
simply be the action that has the highest activation in the output layer, but rarely, the action is 
instead picked using the last layer activations as a probability distribution. Mutation of the genes is 
done by adding small perturbations to the weights and biases with a low probability. 

The fitness of a player is determined by his collection of reward objects populated on the map of an 
area upon initialisation (like grass, rocks and obstacles) in a path drawn on the area behaviour. This 
system was chosen as the progression of this game is very hard to understand a priori without a 
basic understanding of how games work. 

The fitness of a simulation is then the sum of the fitnesses of its players plus a bonus for 
completing any areas. 

Due to time constraints, we were unfortunately unable to adequately search the hyperparameter 
space for the best choices of constants and network size, but the best performance we saw looked 
promising, even for suboptimal hyperparameters, as the agents were quite easily able to learn to 
beat the OrbWay area (consistently collecting the Orbs), and, with a bit more struggle, were able to 
then leave the area upon completion. A video of the agents exhibiting this functionality can be 
found at this link. 

https://youtu.be/cUQoc_QBRDw

