
Dossier de Candidature MP2

Fatou Aïdara Ba Yari Spazzadeschi

1 Introduction

La structure fondamentale du jeu est restée inchangée, tout comme la plupart des éléments
de l’énoncé. Le jeu débute dans l’aire Spawn. Le joueur traversera ensuite des zones générées
procéduralement pour, à la fin, affronter et vaincre le boss.

Afin d’améliorer le gameplay, l’histoire et les graphismes, nous avons ajouté un nouveau
système pour gérer la lumière et l’histoire avec des dialogues et des cinématiques. De plus, pour
simplifier l’implémentation de nos extensions, nous avons amélioré des classes et des méthodes
déjà existantes et en avons ajouté de nouvelles.

2 Moteur de Lumière (LightEngine)

2.1 Fonctionnement du système

Le système d’éclairage repose sur une analyse géométrique de l’environnement, fonctionnant
selon les étapes suivantes :

1. Détection des murs : Le programme initie le processus avec l’AreaGraph de l’aire
courante. Il utilise les coordonnées via la classe Corners pour déterminer les sommets de
chaque DiscreteCoordinate représentant un obstacle (mur).

2. Polygones : Ces sommets sont stockés pour former un polygone (cas habituel) ou plu-
sieurs (si le joueur détruit un mur).

3. Lancer de rayons (Raycasting) : Le programme trace des rayons vers chaque point
et chaque intersection. La méthode findIntersectionWithRay(currentPosition, ray)
est utilisée pour analyser le comportement du rayon.

4. Stockage des intersections : Des instances de IntersectionSR mémorisent les infor-
mations (existence de l’intersection, coordonnées). Pour chaque ensemble d’intersections
sur un même rayon, seule la plus proche du centre de la source lumineuse est conservée.

5. Gestion du vide : Si aucune intersection n’existe dans le rayon de vision (viewRadius),
de "fausses" intersections sont créées pour permettre l’illumination des espaces ouverts.

6. Nettoyage : Les intersections "vides" sont retirées et la géométrie est simplifiée en sup-
primant les points redondants (segments colinéaires).

7. Tri : Les points sont finalement ordonnés selon leur angle par rapport à l’origine pour
permettre la construction correcte du polygone lumineux.

1



Figure 1 – Visualisation de débogage : la variable debug permet d’afficher les rayons (raycas-
ting), le périmètre de l’AreaGraph et le périmètre de l’aire illuminée.

2.2 Rendu graphique et Ombres

En raison de contraintes liées au moteur de jeu (GameEngine) fourni et par choix stylistique,
nous avons décidé de ne pas utiliser de masques alpha (alpha masks) pour dessiner les ombres.

Nous avons opté pour une approche alternative :
— Un carré est dessiné sur la surface de chaque DiscreteCoordinate avec une intensité

variable selon la distance et les paramètres du jeu.
— Pour obtenir la zone d’ombre (le complément du polygone illuminé), nous partons du carré

formé par les 4 sommets de l’aire globale. Nous relions un de ces sommets aux points
d’intersection calculés, traçons le contour des intersections, puis revenons au sommet
initial pour fermer la figure.

— Pour chaque DiscreteCoordinate, nous vérifions si elle se trouve dans le polygone illu-
miné en lançant un rayon vers la droite et en comptant les intersections. Si le point est à
l’intérieur, il est considéré comme étant dans le champ de vision.

2.3 Cycle Jour/Nuit (SunlightOverlay)

Une valeur alpha (transparence) et des valeurs RGB sont attribuées à chaque coordonnée.
Ces valeurs dépendent de la distance au centre, mais aussi des paramètres fournis par la classe
SunlightOverlay. Celle-ci détermine l’ambiance lumineuse en fonction de la progression tempo-
relle dans le jeu.

Le changement de couleur et d’intensité lumineuse s’effectue graduellement via une interpo-
lation linéaire, permettant des transitions fluides entre les états : jour, coucher de soleil, nuit et
éclipse.

2



Figure 2 – Exemple d’illumination avec l’overlay "SUNSET" (Coucher de soleil).

3 Optimisations et Fonctionnalités Avancées

3.1 Optimisations

Plusieurs efforts d’optimisation ont été réalisés. Par exemple, certains calculs lourds ne sont
effectués que lorsque le centre de la lumière se déplace ou que l’AreaGraph subit des modifications
(destruction de murs). Le LightEngine fonctionne correctement pour tout type d’aire et gère la
plupart des cas limites.

Cette classe offre également des fonctionnalités similaires à getFieldOfViewCells, mais en
tenant compte des obstacles physiques. Bien que la classe supporte déjà certaines méthodes pour
gérer plusieurs sources de lumière, l’utilisation de masques alpha faciliterait une implémentation
complète de cette fonctionnalité.

3.2 Le FlameSkull

La gestion de la lumière est utilisée par le nouvel acteur FlameSkull. Après la cinématique,
le monde est plongé dans le noir à cause d’une éclipse provoquée par le boss. Le FlameSkull
devient alors la source de lumière principale et guide le joueur vers la clé, puis vers la sortie.

Le système vérifie si le joueur se trouve dans le champ de vision du FlameSkull. Si ce n’est
pas le cas après un certain temps (cooldown), le FlameSkull revient chercher le joueur. Il gère
également son propre état lors des transitions entre zones déjà visitées, l’aire du boss, ou après
la fin du jeu.

3



Figure 3 – L’acteur FlameSkull éclairant le joueur durant la phase "ECLIPSE".

4 Interface et Audio

4.1 Menus

Nous avons ajouté un gestionnaire de menus (MenuManager). Il permet au joueur de mettre
le jeu en pause, affichant une interface dédiée avec une musique de fond. Un menu GAME OVER
est également implémenté, apparaissant lors de la mort du joueur, accompagné de sa propre
interface et musique.

(a) Menu Pause (b) Menu Game Over

Figure 4 – Interfaces utilisateur ajoutées au jeu.

4



4.2 Effets Sonores et Musique

Pour renforcer l’immersion, nous avons intégré de nombreux effets sonores et musiques :
— Des sons différents se déclenchent lors des interactions avec les objets (collectibles), les

ennemis ou les rochers.
— Pour rendre les déplacements plus réalistes, le bruit des pas est choisi aléatoirement parmi

deux variantes.
— Des musiques spécifiques accompagnent le combat contre le boss et la séquence de victoire.

5 Cinématiques et Narration

5.1 Système de Cinématique

Nous avons créé deux classes et une interface pour implémenter les cinématiques. Vers le
milieu du jeu, une séquence se lance où le joueur rencontre les personnages centraux et le boss.
Durant cette phase, le joueur perd le contrôle de son personnage et les acteurs se déplacent
automatiquement. Cette cinématique inclut également des dialogues. L’aire de la cinématique
redevient une aire classique une fois la séquence terminée.

5.2 Histoire et Dialogues

Afin de rendre l’histoire compréhensible, des dialogues ont été ajoutés au début du jeu,
pendant la cinématique, le combat de boss et la fin du jeu.

Synopsis : L’histoire débute par une confrontation. Lord Morzan, le plus grand sorcier de
l’Empire, a tenté de vaincre le terrible monstre Embergaze (le boss du jeu) pour récupérer la
Sainte Épée, un artéfact impérial volé. Ayant échoué, il a été maudit et transformé en un crâne
flottant enflammé.

Profitant de son triomphe, Embergaze s’est enfui dans les profondeurs du labyrinthe. Le
joueur, après avoir erré pendant des heures, arrive juste à temps pour assister à la scène. Plongés
dans l’obscurité totale du labyrinthe, le joueur et Morzan concluent un marché : Morzan servira
de torche et utilisera sa magie pour guider le joueur ; en retour, ce dernier l’aidera à se venger.

La mission est claire : traverser le labyrinthe, occire le monstre et récupérer la Sainte Épée
pour restaurer l’honneur de l’Empire.

5



(a) Confrontation initiale (b) Transformation de Lord Morzan

Figure 5 – Séquences de la cinématique narrative montrant les dialogues entre Lord Morzan et
Embergaze.

6


	Introduction
	Moteur de Lumière (LightEngine)
	Fonctionnement du système
	Rendu graphique et Ombres
	Cycle Jour/Nuit (SunlightOverlay)

	Optimisations et Fonctionnalités Avancées
	Optimisations
	Le FlameSkull

	Interface et Audio
	Menus
	Effets Sonores et Musique

	Cinématiques et Narration
	Système de Cinématique
	Histoire et Dialogues


