
Mini-Project 1:
Steganography

Lecture

Barbara Jobstmann

27.10.2016

Outline

• Administrative
• Information/Starting point
• Submission and Groups
• Submission Server and Tokens

• Project
• Goal
• Overview
• Provided Code
• Project Details:

• Representation of Images
• Part 1: Concealing an image
• Part 2: Concealing a text
• Part 3: Spiral encoding

Information about the Project

• Detailed project description and provided material:
under “Project 1” → “Description” at
http://proginsc.epfl.ch/wwwhiver/moodle-entry.html

2016-17 : La Stéganographie

http://proginsc.epfl.ch/wwwhiver/moodle-entry.html

Submission

• Deadline: Nov 14th, 1pm

• Groups of (at most) 2 students

• Submission: under “Project 1” → “Rendu” at
http://proginsc.epfl.ch/wwwhiver/moodle-entry.html

2016-17 : La Stéganographie

http://proginsc.epfl.ch/wwwhiver/moodle-entry.html

Submission Content

• Eclipse Archive file (zip-file < 20kB) that includes
• ImageMessage.java

• TextMessage.java

• Steganography.java

Submission Content

• Eclipse Archive file (zip-file < 20kB) that includes
• ImageMessage.java

• TextMessage.java

• Steganography.java

Submission Server
• Will open one week before the deadline:

• From Mon, Nov 7th 9am until Fri, Nov 11th 4pm.
• No submissions over the weekend!
• Reopen on Mon, Nov 14th from 9am to 1pm (strict deadline).

• Each student will need a token (specific key) to submit.
• Tokens will be send out per email one week before the

submission deadline.
• Each submission required two token: one from each

group member. If you work alone, you need to use your
token twice.

• You can submit a new version using the same token.
• Hint: submit initial (incomplete) version way before the

deadline to get familiar with the submission process

Submission Server – Examples

• Example tokens: p1-11111 and p1-12345

• Example of submission with 2 students

• Example of submission with 1 student

Submission – Cheating

• The project is graded.

• The exchange of ideas between groups or with third
parties is permitted and even recommended.

• The exchange of code is strictly forbidden!

• Plagiarism will be controlled and will be considered
cheating.

• In case of cheating, you will receive a rating of "NA“:
Art. 18 “Fraude de l'ordonnance sur la discipline“
https://www.admin.ch/opc/fr/classified-compilation/20041650/index.html

• Note that at anytime, you will need to be able to
explain your code.

https://www.admin.ch/opc/fr/classified-compilation/20041650/index.html

Outline

• Administrative
• Information/Starting point
• Submission and Groups
• Submission Server and Tokens

• Project
• Goal
• Overview
• Provided Code
• Project Details:

• Representation of Images
• Part 1: Concealing an image
• Part 2: Concealing a text
• Part 3: Spiral encoding

Goal

• The purpose of steganography is to hide the
existence of a message from a third party.

• Advantage over cryptography alone: secret
message does not attract attention

Cover Image

Goal

• The purpose of steganography is to hide the
existence of a message from a third party.

• Advantage over cryptography alone: secret
message does not attract attention

Hidden MessageCover Image

Our Approach: LSB Embedding

• Use the LSB of a pixel to store the message – visually
not detectable!

Cover Image Cover Image + Message

Our Approach: LSB Embedding

• Use the LSB of a pixel to store the message – visually
not detectable!

• Each pixel has a color defined by an RGB (Red-
Green-Blue) value represented by one Byte per color

• Changing LSB – changing value of blue slightly

Red 100 100 100 100 100 100 100

Green 200 200 200 200 200 200 200

Blue 255 254 252 248 240 224 182

Diff -1 -2 -4 -8 -16 -32

LSBs 1 2 3 4 5 6

LSB Embedding Options

1. Embed black-white image linearly

10010001100101110110011011001101111….

LSB Embedding Options

1. Embed black-white image linearly

2. Embed Text linearly
Hello  ‘H’, ‘e’, ‘l’, ‘l’, ‘o’  72, 101, 108, 108, 111
1001000, 1100101, 1101100, 1101100, 1101111
10010001100101110110011011001101111….

LSB Embedding Options

3. Spiral Embedding
10010001100101110110011011001101111….

Linear versus Spiral Embedding
10010001100101110110011011001101111….

Project Overview

1. Conceal and reveal an image w. linear embedding
Image  B/W image  Embed directly

2. Conceal and reveal a text
String  ASCII codes  Bit-sequence  Embed linearly

3. Spiral embedding of an image
Image  Bit-Sequence  Embed in spiral

10010001100101110110011011001101111….

….

Project Overview

1. Conceal and reveal an image w. linear embedding
Image  B/W image  Embed directly

2. Conceal and reveal a text
String  ASCII codes  Bit-sequence  Embed linearly

3. Spiral embedding of an image
Image  Bit-Sequence  Embed in spiral

ImageMessage.java Steganography.java

ImageMessage.java Steganography.java

TextMessage.java Steganography.java

Handling Multiple Files (Classes)

• Up to now all you programs were contained in a
single file.

• In this project you will be using several files
• Given a static method m1() defined in a file A.java, and a

static method m2() defined in a file B.java,

• If you want to call m2 in the body of m1 you must use
the following syntax; B.m2();

• E.g., in Main.java:
...
int[][] gray = ImageMessage.toGray(message);
boolean[][] bw = ImageMessage.toBW(gray, 240);
int[][] hidden = Steganography.embedBWImage(cover, bw);
...

Provided Code (1)

class Helper

• Read and write images to two-dimensional integer array
public static int[][] read(String path)

public static boolean write(String path, int[][] array)

• Display image
public static void show(int[][] array, String title)

Image will pop-up and program will be paused until image is closed.

• Example:
int[][] image = Helper.read(“calvin.png");

Helper.show(image, "Original");

Provided Code (2)

class Main and *Main

• Examples of how to use the methods to hide a message
in a cover image and reveal it again.

class SignatureChecks

• Checks that the signatures of the required methods are
correct (to simplify automatic testing).

• Does not check any functionality!

class Utils

• Methods to checks that input (or output) data are
correct, e.g., a two-dimensional array is an image.

• Helpful for debugging!

Provided Code (3)

class Tests

• Some Junit tests to simplify debugging

• These tests are not exhaustive, i.e., if you pass all of
the tests, it does not mean that you will get full
marks!

• During grading we will run automatic tests with
random inputs on your submission.

• It is your responsibility to test your implementation!

Outline

• Administrative
• Information/Starting point
• Submission and Groups
• Submission Server and Tokens

• Project
• Goal
• Overview
• Provided Code
• Project Details:

• Representation of Images
• Part 1: Concealing an image
• Part 2: Concealing a text
• Part 3: Spiral encoding

Representation of Images

• Digital image = raster of pixel (or picture elements)

• Resolution = number of pixels used to represent an
image, e.g., 1024x768 means
• 1024 pixels from left to right

• 768 pixels from top to bottom

• In this project: images are represented as two-
dimensional arrays (of integers or booleans)

Refresher: Arrays in Java
Example Functionality

image.length Length of an array (height of image = no of rows)

image[4] Access the element at position 4
Recall: first element is at position 0;
last element is at position length-1

image[4].length Length of element at position 4 (width of row 4)

image[4][1] Access to element at row 4 and column 1

new boolean[7] Create a new 1-dim. boolean array with 7 entries (0-6)

new int[4][5] Create a new 2-dim. integer array with 4 rows (0-3) and 5
columns (0-4)

Example Functionality

Arrays.copyOf(msg, msg.length) Copies the specified array, truncating
or padding with false (if necessary)
so the copy has the specified length.

Arrays.copyOfRange(message,0,10) Copies the specified range of the
specified array into a new array.

Color Images (RGB Values)

• Each pixel has a color defined by an RGB (Red-
Green-Blue) value.

• The RGB color model is an additive color model in
which red, green, and blue light are added together
in various ways to reproduce a broad array of
colors.
• Each RGB value is represented by three Bytes (3x8 bits),

one Byte for each color.

• Each base colors can have an intensity between 0 (min)
and 28-1=255 (max) in decimal, or equivalently from 00
to ff in hexadecimal.

• In JAVA, the RGB value is stored as integer.

Refresher: Numbers in Java

• Decimal (base 10):
int decValue = 13;

• Binary (base 2: 1bit):
int binValue1 = 0b00000000000000000000000000001101; //32-bits
int binValue2 = 0b1101; //leading zeros are not required
Starting with Java 7 you can use underlines for readability. Underlines are optional.
int binValue1 = 0b00000000_00000000_00000000_00001101;

• Hexadecimal (base 16: 4bits):
int hexValue1 = 0x00_00_00_0d;
int hexValue2 = 0xd; //leading zeros are not required

• Color in JAVA: integer (4 bytes = 32 bits), e.g.,

Color Unused/alpha Red Green Blue

In binary 00000000 00100000 11000000 11111111

In hexad. 00 20 c0 ff

In decimal 0 32 192 255

Task 1: Conceal & Reveal Image

1. Convert image to black-white image (1 bit/pixel)

2. Embed black-white image into cover image

3. Retrieve black-white image from cover image

4. Convert black-white image to RGB image

Task 1: Conceal & Reveal Image

1. Convert image to black-white image (1 bit/pixel)
• Extract red, green, blue values from RGB value

• Convert to grey (average of red, green, blue values)

• Convert to black-white (boolean) value given a threshold

2. Embed black-white image into cover image
• Embed one bit (boolean) into one pixel (integer)

3. Retrieve black-white image from cover image
• Reveal LSB (boolean) from one pixel (integer)

4. Convert black-white image to RGB image
• Merge red, green, blue values into RGB value

Task 1: Conceal & Reveal Image

1. Convert image to black-white image (1 bit/pixel)
• Extract red, green, blue values from RGB value

• Convert to grey (average of red, green, blue values)

• Convert to black-white (boolean) value given a threshold

2. Embed black-white image into cover image
• Embed one bit (boolean) into one pixel (integer)

3. Retrieve black-white image from cover image
• Reveal LSB (boolean) from one pixel (integer)

4. Convert black-white image to RGB image
• Merge red, green, blue values into RGB value

Extract bits
of integer

Extract bits
of integer

Manipulate
bits of integer

Manipulate
bits of integer

Selecting Bits from Integer

int val1 = 0b00000000_10000000_00001010_00000001;

• Step 1: shift right >>
int val2 = val1 >> 9;

Output: 0b00000000_10000000_0000101

• Step 2: mask &
int val3 = val2 & 0b111;

Output: 0b00000000_00000000_0000101
0b101

start end

Merging Bits into Integer

int val1 = 0b1010;
int val2 = 0b10000001;

Goal: 0b1010_10000001

• Step 1: shift left <<

int val1_sl = val1 << 8;

Output in binary: 1010_00000000

• Step 2: bitwise-or |

int val3 = val1_sl | val2;

Output in binary: 1010_10000001

Outline

• Administrative
• Information/Starting point
• Submission and Groups
• Submission Server and Tokens

• Project
• Goal
• Overview
• Provided Code
• Project Details:

• Representation of Images
• Part 1: Concealing an image
• Part 2: Concealing a text
• Part 3: Spiral encoding

Task 2: Conceal and Reveal Text

1. Convert text into sequence of bits
•

•

•

2. Embed sequence of bits into cover image

3. Retrieve sequence of bits from cover

4. Convert bit-sequence to text
•

•

•

•

Task 2: Conceal and Reveal Text

1. Convert text into sequence of bits
a) Separate String into characters

b) Convert character to ASCII control code

c) Convert ASCII code to 16bit-sequence

2. Embed sequence of bits into cover image

3. Retrieve sequence of bits from cover

4. Convert bit-sequence to text
d) Separate bit-sequence into 16bit chunks

c) Convert 16bit sequence to integer (ASCII)

b) Convert ASCII control code to characters

a) Merge characters to String

Hello

‘H’ ’e’ ’l’ ’l’ ’o’

72 101 108 108 111

10010001100101110110011011001101111

Hello

‘H’ ’e’ ’l’ ’l’ ’o’

72 101 108 108 111

10010001100101110110011011001101111

String and Characters in JAVA

1.a) Extract character from String: charAt

char c = message.charAt(i);

1.b) Character to integer: cast

int m = (int) c;

1.c)+ 4.c) Integer to bit-sequence & v.v.
• Review bit-manipulations from Task 1
• ICC lecture

4.b) Integer to Character: cast

char c = (char) m;

4.a) Characters to String: toString

String message = Character.toString(c);

message = message + c;

72 101 108 108 111

10010001100101110110011011001101111

Task 3: Spiral Embedding of Image

1. Convert image into bit-sequence (include size)

2. Embed bit-sequence in spiral into cover image

3. Retrieve spiral bit-sequence from cover

4. Convert bit-sequence to image

Spiral Embedding

• Bit-sequence include height, width, pixel of image

Task 3.1 & 3.4: Image  Bit-Sequence

• Height and width are integers (32 bits)
• See Task 2 for conversion of integers to bit-sequences

and back

• 2-dimensional to 1-dimensional arrays and back
• See slide 27 about handling arrays in JAVA

Task 3.2 & 3.3 Spiral Loop

0 1 2 3 4 5 6 7 8 9

0 0,0 0,9

1

2

3

4

5

6

7

8 8,0 8,9

int[][] image = new int[9][10];

col
row

Task 3.2 & 3.3 Spiral Loop

0 1 2 3 4 5 6 7 8 9

0 0,0 0,9

1

2

3

4

5

6

7

8 8,0 8,9

int[][] image = new int[9][10];

col
row • Four Phases:

• RIGHT

• DOWN

• LEFT

• UP

final static int RIGHT= 0;
final static int DOWN = 1;
final static int LEFT = 2;
final static int UP = 3;

int state = RIGHT;

Task 3.2 & 3.3 Spiral Loop

0 1 2 3 4 5 6 7 8 9

0 0,0 0,9

1

2

3

4

5

6

7

8 8,0 8,9

int[][] image = new int[9][10];

col
row • Four Phases:

• RIGHT: col++

• DOWN: row++

• LEFT: col--

• UP: row—

• Transition:
• RIGHTDOWN

• DOWNLEFT

• LEFTUP

• UPRIGHT

Task 3.2 & 3.3 Spiral Loop

0 1 2 3 4 5 6 7 8 9

0 0,0 0,9

1

2

3

4

5

6

7

8 8,0 8,9

int[][] image = new int[9][10];

col
row • Corner points:

• colMin

• colMax

• rowMin

• rowMax

• Initially?

Task 3.2 & 3.3 Spiral Loop

0 1 2 3 4 5 6 7 8 9

0 0,0 0,9

1

2

3

4

5

6

7

8 8,0 8,9

int[][] image = new int[9][10];

col
row • Corner points:

• colMin

• colMax

• rowMin

• rowMax

• Initially:
colMin=0
colMax=width(-1?)
rowMin=0
rowMax=height(-1?)

Task 3.2 & 3.3 Spiral Loop

0 1 2 3 4 5 6 7 8 9

0 0,0 0,9

1

2

3

4

5

6

7

8 8,0 8,9

int[][] image = new int[9][10];

col
row • Corner points:

• colMin

• colMax

• rowMin

• rowMax

• When to change?
RIGHT:
col==colMax(-1?)
This row is done!
rowMin++

Task 3.2 & 3.3 Spiral Loop

0 1 2 3 4 5 6 7 8 9

0 0,0 0,9

1

2

3

4

5

6

7

8 8,0 8,9

int[][] image = new int[9][10];

col
row • Corner points:

• colMin

• colMax

• rowMin

• rowMax

• When to change?
DOWN:
row==rowMax
This col is done!
colMax--

Task 3.2 & 3.3 Spiral Loop

0 1 2 3 4 5 6 7 8 9

0 0,0 0,9

1

2

3

4

5

6

7

8 8,0 8,9

int[][] image = new int[9][10];

col
row • Corner points:

• colMin

• colMax

• rowMin

• rowMax

• When to change?
LEFT:
col==colMin
This row is done!
rowMax--

Task 3.2 & 3.3 Spiral Loop

0 1 2 3 4 5 6 7 8 9

0 0,0 0,9

1 1,0 1,8

2 2,1 2,7

3 3,2 3,6

4 4,3 4,5

5 5,3 3,5

6 6,2 6,7

7 7,1 7,8

8 8,0 8,9

int[][] image = new int[9][10];

col
row • Corner points:

• colMin

• colMax

• rowMin

• rowMax

• When to change?

Summary

• Administrative
• Information/Starting point
• Submission and Groups
• Submission Server and Tokens

• Project
• Goal
• Overview
• Provided Code
• Project Details:

• Representation of Images
• Part 1: Concealing an image
• Part 2: Concealing a text
• Part 3: Spiral encoding

